我今天说课的内容是大班语言:谈话;秋天多么好。谈话活动是培养幼儿学习在一定范围内运用语言与他人进行交流的语言教育活动类型。在这个教材中要求教师引导幼儿围绕秋天的天气、景色、动植物的变化、人们在大自然界中的活动等,把自身观察到的、感受到的用语言表达出来。这就需要幼儿要有丰富的有关知识经验,因此本次活动的知识点是:秋天的气候和花草树木的变化、几种农作物的丰收和小动物的活动、人们的服装变化等主要特征。为此,在课前采用多种形式如家长带幼儿到郊外去秋游,日常生活中教师引导幼儿观察等。让幼儿观察到、感受到大自然的变化,丰富有关的知识经验。另外再启发幼儿一同上网或去图书馆查阅资料,探索大自然的奥妙,搜集具有秋天特征的图片等。引起幼儿进行谈话的兴趣和积极性。这一知识点在整个知识结构中占基础地位,也是整个教学活动能否顺利开展的关键所在。纲要所提出的要让幼儿乐意与人交谈,讲话礼貌;能注意倾听他人讲话,能清楚的说出自身想说的事。为此制订三了教学目标:1、激发幼儿热爱生活、热爱大自然的美好情感。2、引导幼儿运用已有的知识经验围绕主题大胆回答与交流,发展口语表达能力,培养幼儿注意倾听的好习惯。3、丰富词汇:秋高气爽、凋谢。
《小螃蟹找工作》选材自《幼儿园建构式课程》大班上册,是一节语言活动。孩子与动物有着天然之缘,他们喜欢与动物为伍。他们聆听动物故事,怀抱毛茸茸的动物玩具,翻看各种动物卡片和图书……触目所见,随处有动物。孩子们对动物世界充满着兴趣和好奇,动物是孩子成长过程中的亲密伙伴。然而,现实的动物,尤其是野生动物,又离孩子很远。孩子并不能时时接触,充分了解,真正走进现实的动物世界。而小螃蟹这一动物形象是幼儿所熟悉喜爱的,而且有着鲜明的外形特征,较易引发幼儿的多种联想。纲要中指出“既符合幼儿的现实需要,又有利于其长远发展,既贴近幼儿生活,选择感兴趣的事物问题,又有助于拓展幼儿的经验和视野。”大班语言活动《小螃蟹找工作》恰恰来源于生活,又能服务于幼儿生活,让幼儿在讲述中懂得每个人各有优点,符合大班幼儿的年龄特点和学习特点。因此,我们设计了这一活动。
1、让幼儿在音乐欣赏中去感受歌曲雄壮、有力、气势磅礴的美。2、让幼儿在豪迈激越的音乐中想象歌曲所表现的意境,用语言、表情、动作表现出来。3、激发幼儿从小热爱祖国,反对侵略,有捍卫祖国尊严的情感。目标1和3是本活动重点,目标2是本活动的难点。活动前我作了以下准备:1、课前认识黄河和观看抗日战争记录片。2、歌曲《保卫黄河》的MTV和磁带一盘。3、红旗、大刀、长矛、木枪等道具。本次活动我主要用了直观教学法和情景表演法,分四个环节来完成。首先幼儿随《儿童团歌》的音乐踏步入场,营造本次活动的氛围,教师简单介绍歌曲的历史背景及词作家,提出欣赏要求后,放磁带整体欣赏歌曲2遍,然后让幼儿讨论:这首歌曲听起来怎么样,你好像看到了什么?让幼儿初步感受歌曲雄壮有力、气势磅礴的美。
兴趣是最好的老师,我在设计本课时以故事《兄弟俩当家》导入,调动起学生的学习兴趣,再通过欣赏歌曲《勤快人和懒惰人》,再次呈现出两种人不同的生活场景,加深对歌曲的理解。在歌曲教学中,我通过丰富多彩的教学手段,结合音乐本身的要素,如速度上的对比以及情绪上的变化等,让他们感受不同的音乐形象,提高了音乐鉴赏能力,并在此基础上对音乐形象进行创作。《音乐课程标准》中指出:每个学生都有权利以自己独特的方式学习音乐,享受音乐的乐趣,音乐是情感的艺术,只有通过音乐的情感体验,才能达到音乐教育“以美感人,以美育人”的目的。音乐课堂教学应更多地建立在参与和感受的基础上。学生只有“动”起来才会对音乐有真正的体验和理解。
二、说活动目标《幼儿园教育指导纲要》的指导要点里指出身体的健康和心理的健康是密切相关的,要高度重视良好人际环境对幼儿身心健康的重要性。根据这一指导要点,结合大班幼儿发展特点(观察能力增强,交流欲望增加)和幼儿实际情况。预设了以下三个活动目标:1、会积极参与收集和汇报身边发生的笑话。2、知道幽默能给人们带来欢乐,喜欢与有幽默感的朋友相处。3、养成幼儿幽默、乐观、开朗的健康心理。三、说活动准备丰富的物质经验是完成目标的前提。为了顺利完成以上的教学目标,在活动准备方面特作如下安排:1、幼儿知识经验准备:邀请家长课前给幼儿讲一些生动有趣的幽默故事,同时注意收集一些搞笑图片。(可上网搜索)2、教具、学具准备:教师准备故事材料及幽默视频,幼儿准备彩纸、彩笔等用品。故事材料有:《猪大妈请客》《小和尚上楼》两个主故事和部分次故事。视频材料有:《幽默萝卜——滑倒》情境材料有:《猪大妈请客》和《小和尚上楼》的情境图片。四、说教法幼儿的思维及行为是以具体的现象的实物为主,而幽默本身是一个抽象的名词,让幼儿明白幽默,并理解幽默的好处,显然非易事。所以我根据这一情况,采用了直观教学法和讲述法,把这一抽象的事物进行直观化、明晰化。从而培养幼儿幽默的好性格。1、直观教学法:运用直观、形象的图片让幼儿大胆尝试说说生活中经常看到或听到的笑话,引出主题。2、讲述法:通过生动、形象地讲述,能激发幼儿的情感共识,引导幼儿感受并理解故事的内容,帮助幼儿体会幽默能给人们带来快乐。并能较好地集中幼儿的注意力,为提高教学效果和突破重难点做准备。教学重点:关注笑过后的思考。体会幽默能给人们带来快乐。
1、教学主题图。(1)让学生独立观察教材情境图。思考问题:[1]这幅画面是什么地方?[2]你发现了画面中有什么活动内容?(按顺序)(2)在小组中互相说一说自己观察到了什么内容。你想到了什么?(3)各组代表汇报。(4)教师板书学生汇报的数据。[1]这是某个校园里的活动情景图。从图中发现了教学大楼前面的两树之间都插着4面不同颜色的旗子,升旗台上也飘着一面国旗。[2]运动场上每4人一组小朋友在跳绳。[3]篮球场上每5人一组准备打篮球比赛。[4]板报下面摆的花是每3盆摆一组,旁边还有很多盆花。(5)根据上面的信息(条件),想一想能提出用除法计算的问题吗?大家在小组议一议。
一、游戏活动激趣,认识对称物体1、游戏“猜一猜”:课件依次出示“剪刀、扫帚、飞机、梳子”的一部分,分男、女生猜。2、认识对称物体:1)师质疑:为什么女生猜得又快又准呢?2)小结:像这样两边形状、大小都完全相同的物体,我们就说它是对称物体。(板书:对称)二、猜想验证新知,认识轴对称图形(一)初步感知对称图形1、将“剪刀、飞机、扇子”等对称物体抽象出平面图形,让学生观察,这些平面图形还是不是对称的。2、师小结:像这样的图形,叫做对称图形。(板书:图形)(二)猜想验证对称图形1、猜一猜:出示“梯形、平行四边形、圆形、燕尾箭头”等平面图形,让学生观察。师:这些平面图形是不是对称图形?怎样证明它们是不是对称图形?
解析:先求出长方形的面积,再求出绿化的面积,两者相减即可求出剩下的面积.解:长方形的面积是xym2,绿化的面积是35x×34y=920xy(m2),则剩下的面积是xy-920xy=1120xy(m2).方法总结:掌握长方形的面积公式和单项式乘单项式法则是解题的关键.三、板书设计1.单项式乘以单项式的运算法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里面含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以单项式的应用本课时的重点是让学生理解单项式的乘法法则并能熟练应用.要求学生在乘法的运算律以及幂的运算律的基础上进行探究.教师在课堂上应该处于引导位置,鼓励学生“试一试”,学生通过动手操作,能够更为直接的理解和应用该知识点
(1)用简洁明快的语言概括大意,不能超过200字;(2)图表中能确定的数值,在故事叙述中不得少于3个,且要分别涉及时间、路和速度这三个量.意图:旨在检测学生的识图能力,可根据学生情况和上课情况适当调整。说明:练习注意了问题的梯度,由浅入深,一步步引导学生从不同的图象中获取信息,对同学的回答,教师给予点评,对回答问题暂时有困难的同学,教师应帮助他们树立信心。第四环节:课时小结内容:本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题。通过列出关系式解决问题时,一般首先判断关系式的特征,如两个变量之间是不是一次函数关系?当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.
方法总结:要认真观察图象,结合题意,弄清各点所表示的意义.探究点二:一次函数与一元一次方程一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为()A.x=-1B.x=2C.x=0D.x=3解析:首先由函数经过点(0,1)可得b=1,再将点(2,3)代入y=kx+1,可求出k的值为1,从而可得出一次函数的表达式为y=x+1,再求出方程x+1=0的解为x=-1,故选A.方法总结:此题主要考查了一次函数与一元一次方程的关系,关键是正确利用待定系数法求出一次函数的关系式.三、板书设计一次函数的应用单个一次函数图象的应用一次函数与一元一次方程的关系探究的过程由浅入深,并利用了丰富的实际情景,增加了学生的学习兴趣.教学中要注意层层递进,逐步让学生掌握求一次函数与一元一次方程的关系.教学中还应注意尊重学生的个体差异,使每个学生都学有所获.
故最少由9个小立方体搭成,最多由11个小立方体搭成;(3)左视图如右图所示.方法点拨:这类问题一般是给出一个由相同的小正方体搭成的立体图形的两种视图,要求想象出这个几何体可能的形状.解答时可以先由三种视图描述出对应的该物体,再由此得出组成该物体的部分个体的个数.三、板书设计视图概念:用正投影的方法绘制的物体在投影 面上的图形三视图的组成主视图:从正面得到的视图左视图:从左面得到的视图俯视图:从上面得到的视图三视图的画法:长对正,高平齐,宽相等由三视图推断原几何体的形状通过观察、操作、猜想、讨论、合作等活动,使学生体会到三视图中位置及各部分之间大小的对应关系.通过具体活动,积累学生的观察、想象物体投影的经验,发展学生的动手实践能力、数学思考能力和空间观念.
教学目标:1.经历由实物抽象出几何体的过程,进一步发展空间观念。2.会画圆柱、圆锥、球的三视图,体会这几种几何体与其视图之间的相互转化。3.会根据三视图描述原几何体。教学重点:掌握部分几何体的三视图的画法,能根据三视图描述原几何体。教学难点:几何体与视图之间的相互转化。培养空间想像观念。课型:新授课教学方法:观察实践法教学过程设计一、实物观察、空间想像设置:学生利用准备好的大小相同的正方形方块,搭建一个立体图形,让同学们画出三视图。而后,再要求学生利用手中12块正方形的方块实物,搭建2个立体图形,并画出它们的三视图。学生分小组合作交流、观察、作图。议一议1.图5-14中物体的形状分别可以看成什么样的几何体?从正面、侧面、上面看这些几何体,它们的形状各是什么样的?2.在图5-15中找出图5-14中各物体的主视图。3.图5-14中各物体的左视图是什么?俯视图呢?
一、教材简析 本单元教学内容主要有:除法的初步认识、用2~6的 乘法口诀求商,解决实际问题。除法的初步认识分两个层次:第一,以生活中常见的“每份同样多”的实例合活动情境,让学生建立“平均分”概念。第二,在“平均分”概念的基础上引出除法运算,说明除法算式各部分的名称。用口诀求商遵循由易到难的原则。解决问题是结合除法计算出现的。首先在除法的初步认识教学中 孕伏解决问题的内容。然后在用2~6的乘法口诀求商之后编入了解决有关平均分的实际问题和需要用乘法和除法两步计算解决简单实际问题的内容。
1、 谈话引入新课六一快到了。小朋友们在老师的带领下忙着布置自己的教室呢!可是他们遇到了一些数学上的问题,你能帮他们一快解决吗?2、教学例1。(1)、投影出示主题图引导学生仔细观察。说说他们遇到了什么问题?(2)、引导学生解决问题并列出算式。板书:56÷8(3)、引导学生得出算式的商。问:你是怎么计算的?(想乘算除)(4)、学生独立解决:要是挂7行呢?你能够解决吗?学生说出自己的计算结果,并把求商的过程跟大家说一说。2、 小结:在今天的学习中我们不仅帮小朋友们解决了数学问题,而且还进一步学会了利用乘法口诀来求商。在以后的除法中只要大家能够熟记口诀,就能很快算出除法的商了。
(一)复习旧知,导入新课。师:同学们,上节课我们认识了体积和体积单位,请你填一填这两道题,看看你学得怎么样。(课件第2张)1.常用的体积单位有(立方厘米)、(立方分米)、(立方米),可以分别写成(cm³) 、(dm³)、 (m³)。2.棱长是1cm的正方体,体积是(1cm³)。3.棱长是1dm的正方体,体积是(1dm³)。4.棱长是1m的正方体,体积是(1m³)。【设计意图】1dm³是多少cm³呢?这节课我们就来研究一下体积单位间的进率。(板书课题)(二)探究新知1.探究立方分米和立方厘米间的进率:(课件第3张)(1)下图是一个棱长为1dm的正方体,体积是1dm³。想一想,它的体积是多少立方厘米呢?(2)小组讨论,你是怎样想的?(3)汇报交流:(课件第4张)生1:如果把它的棱长看作是10cm,可以把它切成1000块1cm³的小正方体。10×10×10=1000.生2:它的底面积是1dm²,就是100cm²,100×10=1000,一共是1000cm³。1dm³=1000cm³【设计意图】用小组讨论的方式,让学生从讨论的过程中找到解决问题的方法,培养学生的语言表达能力、思维能力。2.你知道1m³等于多少立方分米吗?(课件第5张)生1:把棱长是1m的正方体,看作棱长是10dm的正方体,10×10×10=1000dm³。1m³=1000dm³。 生2:棱长是1m的正方体,底面积是1m²,就是100dm²,100×10=1000dm³,一共是1000dm³。生3:1m³=1000dm³ 3.整理计量单位之间的进率。(1)小组讨论:到现在为止,我们已经学习了哪些计量单位?请整理在表中。
人民币的简单计算是在对人民币的认识后,是人民币的再进一步的认识。本节课的主要知识点主要有三个:一人民币单位间的换算、二进行简单的计算,三是知道商品价格的表示形式。同时通过这节课的学习,逐渐培养交往和社会实践能力,体会人民币在社会生活商品交换中的作用。为了达成以上的一些目标我是这样设计这节课。一、从学生经验入手直接引入商品价格,在学生回忆商品价格的表示方法中,唤醒学生的思绪,使学生觉得在所学的知识与实际生活的联系。让学生体验到数学与日常生活的密切联系。二、在操作中完成进率的换算。进率的换算在教学是一个重点也是难点,为此我在教学上通过不同的的付钱方法,深刻体会,这样的教学让说不清的关系,在操作讲解中得以内化。学生学了也不易忘记。
一、情境导入1.计算:(1)-6x3y4z2÷(-23x2y2);(2)9mn÷(-6mn)2·(13n2);(3)6(a-b)3c5÷[-35(a-b)2c]·[-2(a-b)3c4].2.m(a+b+c)=am+bm+cm,(am+bm+cm)÷m=am÷m+bm÷m+cm÷m=a+b+c.你能根据多项式乘以单项式的运算归纳出多项式除以单项式的运算法则吗?二、合作探究探究点:多项式除以单项式【类型一】 直接利用多项式除以单项式进行计算计算:(72x3y4-36x2y3+9xy2)÷(-9xy2).解析:根据多项式除以单项式,先用多项式的每一项分别除以这个单项式,然后再把所得的商相加.解:原式=72x3y4÷(-9xy2)+(-36x2y3)÷(-9xy2)+9xy2÷(-9xy2)=-8x2y2+4xy-1.方法总结:多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加.
一、教材分析:《名数的改写》是四年级下册小数的意义和性质的内容。该内容是在学生已经学习了利用小数点位置移动引起小数的大小变化规律的基础上进行教学的。本信息窗呈现的是一只天鹅从出生到长大体重变化的情况。图中用文字标出了具体的变化数据。主要通过引导学生解答天鹅体重变化的问题,让学生体会到单位不相同,必须改写成相同的单位,展开对名数改写知识的学习。二、教学目标根据上述对教材的分析,考虑到学生已有的认知结构和心理特征,我确立了本课的教学目标为:知识与技能方面:会利用移动小数点的位置来进行名数改写。理解知识间联系,提高学生运用所学知识解决问题的能力。过程与方法方面:利用小数点位置移动引起小数大小变化的规律和名数改写的基本方法,引导学生进行知识迁移,从而掌握利用小数点的位置移动进行名数改写的方法。
探究点二:用配方法解二次项系数为1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左边不是一个完全平方式,需将左边配方.解:移项,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.开平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法总结:用配方法解一元二次方程时,应按照步骤严格进行,以免出错.配方添加时,记住方程左右两边同时加上一次项系数一半的平方.三、板书设计用配方法解简单的一元二次方程:1.直接开平方法:形如(x+m)2=n(n≥0)用直接开平方法解.2.用配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n(n≥0)的形式,再用直接开平方法,便可求出它的根.3.用配方法解二次项系数为1的一元二次方程的一般步骤:(1)移项,把方程的常数项移到方程的右边,使方程的左边只含二次项和一次项;(2)配方,方程两边都加上一次项系数一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;(3)用直接开平方法求出它的解.
二、合作交流活动一:(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业: