解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形矩形的定义:有一个角是直角的平行四边形 叫做矩形矩形的性质四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.
2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形吗?说明理由。答案:四边形ACBE是矩形.因为CD是Rt△ACB斜边上的中线,所以DA=DC=DB,又因为DE=CD,所以DA=DC=DB=DE,所以四边形ABCD是矩形(对角线相等且互相平分的四边形是矩形)。四、课堂检测:1.下列说法正确的是( )A.有一组对角是直角的四边形一定是矩形 B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形 D.对角互补的平行四边形是矩形2. 矩形各角平分线围成的四边形是( )A.平行四边形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的说法是否正确(1)有一个角是直角的四边形是矩形 ( )(2)四个角都是直角的四边形是矩形 ( )(3)四个角都相等的四边形是矩形 ( ) (4)对角线相等的四边形是矩形 ( )(5)对角线相等且互相垂直的四边形是矩形 ( )(6)对角线相等且互相平分的四边形是矩形 ( )4. 在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是 .(写出一种即可)
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四边形AFBD是矩形.方法总结:本题综合考查了矩形和全等三角形的判定方法,明确有一个角是直角的平行四边形是矩形是解本题的关键.三、板书设计矩形的判定对角线相等的平行四边形是矩形三个角是直角的四边形是矩形有一个角是直角的平行四边形是矩形(定义)通过探索与交流,得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题.通过开放式命题,尝试从不同角度寻求解决问题的方法.通过动手实践、合作探索、小组交流,培养学生的逻辑推理能力.
1. _____________________________________________2. _____________________________________________你会计算菱形的周长吗?三、例题精讲例1.课本3页例1例2.已知:在菱形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH.四、课堂检测:1.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,菱形的边长是________cm.2.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.3.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 4.已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则别一条对角线长为________厘米.5.菱形的两条对角线把菱形分成全等的直角三角形的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个6.在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积
方法三:一个同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。通过探究,得到: 的四边形是菱形。证明上述结论:三、例题巩固课本6页例2 四、课堂检测1、下列判别错误的是( )A.对角线互相垂直,平分的四边形是菱形. B、对角线互相垂直的平行四边形是菱形C.有一条对角线平分一组对角的四边形是菱形. D.邻边相等的平行四边形是菱形.2、下列条件中,可以判定一个四边形是菱形的是( )A.两条对角线相等 B.两条对角线互相垂直C.两条对角线相等且垂直 D.两条对角线互相垂直平分3、要判断一个四边形是菱形,可以首先判断它是一个平行四边形,然后再判定这个四边形的一组__________或两条对角线__________.4、已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F求证:四边形AFCE是菱形
(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
(2)如果对应着的两条小路的宽均相等,如图②,试问小路的宽x与y的比值是多少时,能使小路四周所围成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根据两矩形的对应边是否成比例来判断两矩形是否相似;(2)根据矩形相似的条件列出等量关系式,从而求出x与y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假设两个矩形相似,不妨设小路宽为xm,则30+2x30=20+2x20,解得x=0.∵由题意可知,小路宽不可能为0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,则30+2x30=20+2y20,所以xy=32.∴当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.方法总结:因为矩形的四个角均是直角,所以在有关矩形相似的问题中,只需看对应边是否成比例,若成比例,则相似,否则不相似.
(2)相似多边形的对应边的比称为相似比;(3)当相似比为1时,两个多边形全等.二、运用相似多边形的性质.活动3 例:如图27.1-6,四边形ABCD和EFGH相似,求角 的大小和EH的长度 .27.1-6教师活动:教师出示例题,提出问题;学生活动:学生通过例题运用相似多边形的性质,正确解答出角 的大小和EH的长度 .(2人板演)活动41.在比例尺为1﹕10 000 000的地图上,量得甲、乙两地的距离是30 cm,求两地的实际距离.2.如图所示的两个直角三角形相似吗?为什么?3.如图所示的两个五边形相似,求未知边 、 、 、 的长度.教师活动:在活动中,教师应重点关注:(1)学生参与活动的热情及语言归纳数学结论的能力;(2)学生对于相似多边形的性质的掌握情况.三、回顾与反思.(1)谈谈本节课你有哪些收获.(2)布置课外作业:教材P88页习题4.4
准备:·知识经验准备:幼儿已经认识了一些常见的植物·材料准备:中草药图片·重点:在植物中对中草药进行分类 过程·情境表演“医院”——教师饰“病人”因咳嗽去看病,“病人”不能吃西药所以幼儿饰“医生”开了一贴中草药“川贝止咳露”,“病人”吃后好多了。——小朋友,你们知道医生给我开的是什么?·感知了解 ——多亏医生给我开了中草药治好了我的病。今天还来了许多中草药朋友,大家用自己的好办法也去认识认识它们吗?
二、乘船安全 1、讲解乘船的意外伤害事故,引起学生的重视。 2、了解乘船的安全知识。 乘船要做到二要三不要: (1)二要 一要乘坐证件齐全的船只。 二要乘船时听从指挥。 (2)三不要 不要乘坐超载的船只;不要在船上嬉戏打闹;不要冒险乘船。
一、参观小学,看看小学生是怎样上课的。师:前几天我们一起去参观了蔚斗小学,你们也看到过了哥哥姐姐是怎么样上课的。那们现在请你来告诉我在上课时应该怎样?(当老师在讲课的时候,哥哥姐是怎样听讲的?当老师在提问时,哥哥姐姐是怎样回答?没有叫道的哥哥姐姐又是怎样听的?)师:你们刚刚说了很多,那请你们在来说一说,哥哥姐姐又是怎么做作业的呢?
(1)听一遍范唱录音。 (2)讨论歌曲的歌词表现的是什么内容?(师生共同讨论)第一部分实际上只有两句歌词:“请把我的歌带回你的家,请把你的微笑留下”,歌声与微笑架起了友谊的桥梁。第二部分是引申,描绘了“友谊花开遍地香”的情景。这首歌虽然短小,意义却不小。
详细过程:(一) 介绍新疆歌曲节奏、旋律提问引导学生,与学生互动,具体如下:1、提到新疆、新疆人大家有怎样的印象?设想回答:能歌善舞、沙漠、羊肉串均可。2、住在新疆的少数民族有哪些?设想回答:维吾尔。只有维吾尔吗?还有其他民族吗?设想回答:塔吉克、哈萨克。3、新疆人能歌善舞,有那首新疆歌曲给大家留下过深刻印象?能否哼唱?设想回答:学生积极参与。4、让学生从老师将哼唱的歌曲众分辨出那首是新疆民歌。(准备《十大姐》、《城墙上跑马》、《石榴青》、《绣荷包》、《芦柴花》、《森吉德玛》等不同民族、各种风格的曲子让学生听辨选择。)
《G弦上的咏叹调》是创作于1729-1731年的管弦乐作品。后经小提琴家威廉米改编,主旋律完全在小提琴G弦上演奏,因此得名。巴赫是巴洛克时期的德国作曲家,杰出的管风琴、小提琴、大键琴演奏家,同作曲家亨德尔和D.斯卡拉蒂齐名。巴赫被普遍认为是音乐史上最重要的作曲家之一,他的创作使用了丰富的德国的音乐风格和娴熟的复调技巧。他的音乐集成了巴洛克音乐风格的精华。并被尊称为西方“现代音乐”之父,也是西方文化史上最重要的人物之一。
教学过程:一、导入新课。这节课老师和同学们一道去领略西洋音乐的发展历程。二、讲授新课。同学们,你们还认识这些乐器吗?教师播放录音,带上设计好的乐器音色音响片段,逐一提问。(1)《G弦上的咏叹调》播放录音,熟悉作品,简介作曲家的生平及其代表作品以及这部作品的创作始末。(巴赫作曲家,管风琴演奏家,教育家,欧洲“巴罗克音乐”的代表人物之一,被誉为“欧洲近代音乐之父”。代表作品有声乐曲《马太受难曲》、《b小调弥撒曲》以及管弦乐《勃兰登堡协奏曲》等)。
一、介绍一般新疆歌曲节奏,旋律特点要求学生熟悉。二、教师播放课前准备好的音乐让学生听,形成初步的印象。三、视唱歌曲: (1)板书歌曲中难点节奏,教师与学生同打。 (2)打开书,试打全曲节奏,采用分组轮打、接龙的方式使每个学生都能掌握。 (3)视唱歌曲旋律,采用小组接龙方式使学生熟悉歌曲旋律。 (4)如有时间,把歌词打带入其中。四、填词教学。
一、上课礼仪和导入1.师生问好,介绍本节课内容。2.复习上节课《半个月亮爬上来》第一声部,及时纠正不足的地方。3.发声练习(1)1 3 5 3 ︱ 1 – ‖ U U U(2)1 3 5 3 ︱ 1 3 5 3 ︱ 1 - ‖ Mi hi ma ha二、新课内容1.教师逐句用钢琴带唱二声部旋律乐谱2遍。2.随时解决学生唱不准的乐句和节奏。如:(1)带附点的空拍X .0。(2)小节内第四拍空拍。4/4 X X X 0 ‖(3)带变化音的乐句。13 2 1 7 #6 7 ︱ 1 . 1 1 . 0 ‖3.不用老师带唱学生集体唱一遍乐谱。4.逐个分组唱乐谱谱。5.教师逐句教唱歌词2遍。6.解决歌曲中加入歌词难唱准和相似的乐句,反复唱2遍区分
教学过程:一、组织教学。1、宣布上课。2、面带微笑问好:同学们好!二、导入新课。同学们在古典音乐的历史长河里,美妙的乐章不胜枚举,有的曲子愈久愈甘醇,雅俗共赏,今天我们介绍一首乐曲。三、欣赏音乐。1、播放音乐(第1次听),直接从聆听入手,请同学们在听的过程中静静思考是中国乐曲还是外国乐曲、什么乐器?2、提问乐曲用什么乐器演奏,你对它有哪些了解。3、看幻灯片介绍乐曲作者巴赫的成就和成长故事。四、欣赏分析。1、教师分段欣赏讲解该曲,启发学生画出每段的旋律线。2、通过分析力度变化,音色特点,得出乐曲所表达情绪特点。五、总结下课。
创设情景 学唱歌曲 1、导入:刚才老师给同学们看的是哪个季节的景色?我们都知道一年有四个季节,哪四个?你最喜欢哪个季节?为什么? 2、我们大家都知道威尼斯是著名的水上城市。今天老师就带同学们去看看世界著名的水上城市。看威尼斯水景的课件听歌曲《夏日泛舟海上》。 3、这部音乐作品什么地方最吸引你?(情绪、力度、速度、旋律、节奏等) 4、教师范唱歌曲,请同学们小声跟唱。 5、教师慢速弹旋律学生视谱练唱。 6、放录音学生跟唱歌曲, 让同学们思考用哪种声音演唱歌曲最为合适? 7、同学们用自然亲切的声音有感情的演唱歌曲。
教学目标 1.学唱歌曲《夏日泛舟海上》以及配乐散文朗诵《荷塘月色》。 2.通过不同的演唱形式,让学生感受欢快、活泼的风格特点,使学生了解音乐与文化作品在描绘夏日景象上异曲同工之妙笔,感受其审美意境。教学重点: 1.启发学生用自然、流畅、舒展的声音演唱《夏口泛舟海上》,并能准确的表达歌曲的情感。 2.掌握三拍子的特征及歌曲中音乐表情记号的作用。教学过程:第一环节:导入:1.播放歌曲《宁夏》;2.用语言导人。第二环节:学唱歌曲《夏日泛舟海上》1.接下来,老师要带同学们到美丽的大海上泛舟,请同学们在感受大自然美景的过程当中,也感受一下音乐的情绪。2.引导学生边听边感受歌曲的旋律、情绪有什么特点,播放录音范唱。3.请同学谈谈对歌曲的感受。