二、使用对象及场所:大班幼儿在幼儿院进行。三、活动目标1、在观察、比较、讨论中,对线进行颜色、粗细、质地、长短的分类。2、教师和标记的引导下,学习自己设计简单的统计表。3、语言表达操作的情况,使幼儿的语言和思维同步得到发展。四、活动准备1、各种各样的线若干。2、纸、笔每人一份。3、统计示范图。
活动准备: 背景图(马路)、斑马图片、斑马线 活动过程: 一、故事导入 1、讲述故事“有一群快乐的…………主动放慢了速度”。 1)今天有小动物到我们班级来,他们要给我们说个好听的故事。故事的名字是《马路上的斑马线》。 2)小动物们是怎么过马路的?(坐在斑马叔叔的背上,让斑马叔叔驮着过马路) 3)可是斑马叔叔每天这么背小动物过马路,他多累啊,你们有没有好办法?(幼儿想办法) 4)你们想了很多好办法,小动物们也想到好办法了,让我们来听听他们的办法。 2、讲述故事“聪明的小猴子想出了一个好办法……就一点也不害怕了”。
2、尝试运用多种材料让电线站起来。3、培养幼儿大胆尝试、勇于探索与表达的精神。 活动准备:1、粗细、长短不同的彩色胶皮电线若干2、透明胶带、橡皮泥、积木、瓶盖、米土豆、泡沫、黄沙 活动过程:一、猜一猜,激发活动兴趣1、师:小朋友看,今天老师带来了一个口袋,你们猜猜里面装了什么呢?2、小朋友猜了这么多,口袋里到底是什么呢?请小朋友上来摸一摸3、请幼儿从口袋里摸出电线,提问:这是什么?像什么?电线有什么用?
一、教学目标(一)知识教育点使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.(二)能力训练点要求学生进一步熟练掌握解析几何的基本思想方法,提高分析、对比、概括、转化等方面的能力.(三)学科渗透点通过一个简单实验引入抛物线的定义,可以对学生进行理论来源于实践的辩证唯物主义思想教育.二、教材分析1.重点:抛物线的定义和标准方程.2.难点:抛物线的标准方程的推导.三、活动设计提问、回顾、实验、讲解、板演、归纳表格.四、教学过程(一)导出课题我们已学习了圆、椭圆、双曲线三种圆锥曲线.今天我们将学习第四种圆锥曲线——抛物线,以及它的定义和标准方程.课题是“抛物线及其标准方程”.首先,利用篮球和排球的运动轨迹给出抛物线的实际意义,再利用太阳灶和抛物线型的桥说明抛物线的实际用途。
教学准备 1. 教学目标 知识与技能掌握双曲线的定义,掌握双曲线的四种标准方程形式及其对应的焦点、准线.过程与方法掌握对双曲线标准方程的推导,进一步理解求曲线方程的方法——坐标法.通过本节课的学习,提高学生观察、类比、分析和概括的能力.情感、态度与价值观通过本节的学习,体验研究解析几何的基本思想,感受圆锥曲线在刻画现实和解决实际问题中的作用,进一步体会数形结合的思想.2. 教学重点/难点 教学重点双曲线的定义及焦点及双曲线标准方程.教学难点在推导双曲线标准方程的过程中,如何选择适当的坐标系. 3. 教学用具 多媒体4. 标签
解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED=∠BAE+∠CDE.理由如下:过点E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=32∠AFD.方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等;性质2:两条平行线被第三条直线所截,内错角相等;性质3:两条平行线被第三条直线所截,同旁内角互补.平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学
解析:横轴表示时间,纵轴表示温度.温度最高应找到图象的最高点所对应的x值,即15时,A对;温度最低应找到图象的最低点所对应的x值,即3时,B对;这天最高温度与最低温度的差应让前面的两个y值相减,即38-22=16(℃),C错;从图象看出,这天0~3时,15~24时温度在下降,D对.故选C.方法总结:认真观察图象,弄清楚时间是自变量,温度是因变量,然后由图象上的点确定自变量及因变量的对应值.三、板书设计1.用曲线型图象表示变量间关系2.从曲线型图象中获取变量信息图象法能直观形象地表示因变量随自变量变化的变化趋势,可通过图象来研究变量的某些性质,这也是数形结合的优点,但是它也存在感性观察不够准确,画面局限性大的缺点.教学中让学生自己归纳总结,回顾反思,将知识点串连起来,完成对该部分内容的完整认识和意义建构.这对学生在实际情境中根据不同需要选择恰当的方法表示变量间的关系,发展与深化思维能力是大有裨益的
解析:(1)根据图象的纵坐标,可得比赛的路程.根据图象的横坐标,可得比赛的结果;(2)根据乙加速后行驶的路程除以加速后的时间,可得答案.解:(1)由纵坐标看出,这次龙舟赛的全程是1000米;由横坐标看出,乙队先到达终点;(2)由图象看出,相遇是在乙加速后,加速后的路程是1000-400=600(米),加速后用的时间是3.8-2.2=1.6(分钟),乙与甲相遇时乙的速度600÷1.6=375(米/分钟).方法总结:解决双图象问题时,正确识别图象,弄清楚两图象所代表的意义,从中挖掘有用的信息,明确实际意义.三、板书设计1.用折线型图象表示变量间关系2.根据折线型图象获取信息解决问题经历一般规律的探索过程,培养学生的抽象思维能力,经历从实际问题中得到关系式这一过程,提升学生的数学应用能力,使学生在探索过程中体验成功的喜悦,树立学习的自信心.体验生活中数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣
解:(1)∵AB、CD互相垂直平分,∴OC=OD,AO=OB,且AC=BC=AD=BD;(2)OE=OF,理由如下:在△AOC和△AOD中,∵AC=AD,OC=OD,AO=AO,∴△AOC≌△AOD(SSS),∴∠CAO=∠DAO.又∵OE⊥AC,OF⊥AD,∴OE=OF.方法总结:本题是线段垂直平分线的性质和角平分线的性质的综合,掌握它们的适用条件和表示方法是解题的关键.三、板书设计1.角平分线的性质定理角平分线上的点到这个角的两边的距离相等.2.角平分线的判定定理在一个角的内部,到角的两边距离相等的点在这个角的平分线上.本节课由于采用了动手操作以及讨论交流等教学方法,从而有效地增强了学生对角以及角平分线的性质的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生在性质的运用上还存在问题,需要在今后的教学与作业中进一步的加强巩固和训练.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
不知不觉来镇上工作已经半年了,在这半年的日子里,我时刻谨记自己是一名共青团员,时刻用共青团员的标准来严格要求自己,勤奋学习,努力工作。通过半年多的工作和学习经历,我在基层、在农村学到了很多书本上学不到的知识,在不断的摸索实践中慢慢完成了从教师到农村基层工作者的角色转变,同时也慢慢适应了农村的生活,并学会了怎样去做一名基层工作者,我深知要做好这个角色不是件容易事,但我坚信只要自己肯干、肯吃苦,就一定会有快乐、有收获。
第十一条、劳动合同解除或终止:1、若乙方需解除劳动合同书,应当提前30日以书面的形式通知甲方,书面通知以送达甲方(具体部门、职务)为准;2、有关解除或终止劳动合同的事项,按照《劳动合同法》等法律、法规有关规定执行。3、在解除或者终止劳动合同时,乙方应当将正在负责的工作事项以及甲方交付乙方使用的财物与甲方指定的工作人员进行交接。因乙方原因未办理交接造成甲方损失的,由乙方赔偿。4、因解除或者终止劳动合同,乙方依法应获得经济补偿金,但乙方未与甲方办理工作交接前,甲方暂不支付经济补偿金。
第十二条 因乙方责任终止合同的约定 乙方有下列情形之一的,甲方可终止合同并收回房屋,造成甲方损失,由乙方负责赔偿: 1.擅自拆改承租房屋结构或改变承租房屋用途的; 2.拖欠租金累计达2个月; 3.利用承租房屋进行违法活动的; 4.故意损坏承租房屋的。
大家好!在这花团锦簇、绿意正浓的美好时节,我们的人民军队也历经了__年风雨洗礼,一路屹立不倒,锋芒永存,在这历史性的光辉时刻,我们非常高兴的迎来了___中学20**年的新生军训。能够承担___中学20__级高一新生军训任务,我们感到非常的自豪!在接下来的几天里我们将与学校的老师、同学们共同度过一段充实、而有意义的军训生活。在此,我代表全体教官,向参训的全体同学们表示热烈的祝贺!祝贺你们即将开始进入人生的第一次跨越!
作为母亲,此时此刻,我无比激动,多少个艰辛和忙乱的日子里,总盼望着孩子长大,我曾无数次的想象和憧憬着她身穿婚纱亭亭玉立的站在我们面前的情景。突然间她长大了,拥有了漂亮、健康和知识,今天又做了幸福的新娘!母爱是一条回家的小路,伴着这首诗我的女儿走过了二十几个春夏秋冬。在她成长的路上,给我们带来了许许多多的快乐与幸福。至今我还能清晰的记得她六岁时获得宁波市舞蹈比赛一等奖的演出情景,后来的全国雏鹰奖和新苗杯主持人金奖给我们带来了一次次的惊喜和欣慰。因此。我祝福我的女儿,也感谢我的女儿。同时我也感谢我们的亲家,你们的精心培养让我们的家庭从今天开始有了一个儿子。
一、劳动合同期限合同期限自______年____月____日起至______年____月____日止。 二、工作内容和工作地点1、乙方同意根据甲方生产(工作)需要,从事_________________工作,甲乙双方可另行约定岗位具体职责和要求。2、乙方的工作地点:_____________________________。
第一条 合同期限 合同期限为__________年,从__________年__________月__________日至__________年__________月__________日止。其中试用期为__________个月,从__________年__________月__________日至__________年__________月__________日止。 第二条 工作岗位 甲方安排乙方从事__________工作。 甲方有权根据生产经营需要及乙方的能力、表现调整乙方的工作,乙方有反映本人意见的权利,但未经甲方批准,乙方必须服从甲方的管理和安排。 乙方应按时,按质,按量完成甲方指派的任务。
根据(<中华人民共和国劳动法>和国家及省的有关规定,甲乙双方按照平等自愿、协商一致的原则订立本合同。一、合同期限(一)合同期限双方同意按以下第______种方式确定本合同期限:1、有固定期限:从__________年_______月_______日起至________年_______月_______日止。2、无固定期限:从__________年______月_______日起至本合同约定的终止条件出现时止(不得将法定解除条件约定为终止条件)。3、以完成一定的工作为期限:从__________年_______月_______日起至工作任务完成时止。
一、导入部分: 谈话:小朋友们早上好,今天范老师要和小朋友一起来玩一个游戏,在玩游戏之前,小朋友先告诉我10以内的单数都有谁?10以内的双数都有谁? 二、基本部分: 1、游戏名称:跳单双 ①教师介绍游戏规则:今天我们小朋友身上都系有漂亮的丝带,那小朋友看一看你们的丝带有什么不同?(颜色不同)那我们系红丝带的小朋友围成一个圈,系黄丝带的小朋友在红丝带小朋友的外面再围一个大圈,小朋友手插腰跳,里面的小朋友往外跳,外面的往里跳,按照老师的的口令来回的跳反复进行,直到老师说:“停”则立即停下,老师检查完丝带就可以判断出你跳的是单数还是双数,你们相信吗?﹙教师要说的神秘一些引发幼儿的好奇心和兴趣﹚②游戏过程:教师喊口令幼儿做游戏,提醒幼儿遵守游戏规则,并对犯规的幼儿及时提醒。 ③教师总结:为什么老师能说出你们谁是单数,谁是双数呢?接下来我们一起来听一个故事,听完这个故事你们就知道了。﹙引起幼儿的好奇心﹚
活动准备 1、教具准备:三种排列规律的范例条各一(○□○□○□;○□□○□□○□□;○□△○□△○□△);“奇妙的书”课件(封面是彩虹,从第一页到第七页依次是一颗红色的草莓、两只橙色的橘子、三根黄色的香蕉、四只绿色的西瓜、五只青色的苹果、六颗蓝色的梅子、七串紫色的葡萄:图片几组(从儿童到少年到成人再到老年人;从树芽到小树再到大树;从鸡蛋到小鸡再到母鸡,等等)。2、学具准备:操作纸、记号笔、三角形、圆形、正方形各若干。 活动过程一、开始部分 谈话导人:小朋友有没有发现,今天我们座位排列的顺序有什么特别的地方?(一个男孩、一个女孩)有一组图形宝宝排列的顺序和我们很相似,我们一起来看看它们是谁。