前段时间曾经看到一个报道,让我很受启发,说美国一家大公司非常重视安全工作,不管召开任何会议他们都有一个惯例,正式开会之前主持人必须说:“开会前,我先向诸位介绍安全出口。”而且,在会议室里还有一张特殊的椅子,上面罩着一个红布套,套子上写着“如有紧急情况请跟我来”。这张椅子不是每个人都可以坐,只有非常熟悉所在楼道情况的人才有资格坐。公司还规定,上下楼梯必须扶扶手,在办公室里不准奔跑,铅笔芯要朝下插在笔筒内,喝水时手里不许把玩东西———如此谨小慎微的安全教育、规章制度和具体措施,看起来是安全生产管理中的一个个小小元素,但正是这一个个小小的安全元素,使得这家大公司一直保持着骄人的安全记录,并造就了“让员工在工作场所比在家里安全十倍”的神话———这就是享有全球最安全公司美称之一的杜帮公司。
1、现在每天生产的比原来多百分之几?2、原来每天生产的比现在少百分之几?3、现在每天生产的是原来的百分之几?第三层次请你为你的同桌出一道求“一个数比另一个数多(或少)百分之几”的应用题。第一组是基本练习,通过练习及两个答案的对比,让学生对单位“1”不同导致结果的不同印象深刻。第二组习题的情境设计为灾区人民急需的药品,在问题的设计上难度加大了,需要学生仔细思考,真正理解问题的含义后才能做对,锻炼了学生的思维能力。第三组请学生互相出题的目的是要检验学生对本课例题的理解程度,不仅深化了对知识的理解,而且还通过判断别人出题是否正确的同时锻炼了辨析的能力。总之,作为数学教师,本节课我力求数字简单化,让学生在情境中学习,在探究中提高,在合作中发展,体现数学活动是师生交往、共同发展的过程。
1.了解我国城市等级划分的标准,知道不同国家和地区城市等级划分的标准是不同的。2.了解不同的城市等级其城市地域结构不同,提供的服务种类和服务范围是不同的。联系城市地域结构的有关理论,说明不同规模城市服务功能的差异。3.了解不同等级城市服务范围的嵌套理论,了解不同等级城市空间分布特点。教学重点:1.了解我国城市等级划分的标准2.了解不同的城市等级其城市地域结构不同,提供的服务种类和服务范围是不同的。教学难点::不同等级城市服务范围的嵌套理论教具准备:多媒体教学方法:比较分析法、图示法、讲述法、列表对比法教学过程:第一课时导入新课:我们生活在不同的城市,如广州、佛山、西樵等,我们知道,这些城市有大小之分,也就是说城市等级是是不同的,那么城市的等级是如何划分的呢?不同等级城市的服务功能如何呢?这就是我们今天要探讨的第二节
二、教材分析本节课是让学生结合具体情境,理解路程、时间与速度之间的关系。为此,教材安排了一个情境:比一比两辆车谁跑得快一些?从而让学生归纳出路程、时间与速度三个数量,进而归纳出速度=路程÷时间,再结合试一试两题,让学生得出:路程=速度×时间,时间=路程÷速度,进一步理解路程、速度、时间三者之间的关系。因此,理解路程、时间与速度之间的关系是本节课的重点,难点是速度的单位。学习了这节课,学生可以解决生活中的一些实际问题,并且可以合理地安排时间,提高效率。三、学情分析学生对于路程、时间与速度的关系一定有所了解,但他们虽然知道三者之间的数量关系式,却并不十分了解为什么有这样的关系。因此,在课上应遵循“问题情境---建立模式---解释应用”的基本叙述模式,为学生自主参与、探究和交流提供时间和空间。四、教学目标
三、作出速度-时间图像(v-t图像)1、确定运动规律最好办法是作v-t图像,这样能更好地显现物体的运动规律。2、x y x1 x2 y2 y1 0讨论如何在本次实验中描点、连线。(以时间t为横轴,速度v为纵轴,建立坐标系,选择合适的标度,把刚才所填表格中的各点在速度-时间坐标系中描出。注意观察和思考你所描画的这些点的分布规律,你会发现这些点大致落在同一条直线上,所以不能用折线连接,而用一根直线连接,还要注意连线两侧的点数要大致相同。)3、若出现了个别明显偏离绝大部分点所在直线的点,该如何处理?(对于个别明显偏离绝大部分点所在直线的点,我们可以认为是测量误差过大、是测量中出现差错所致,将它视为无效点,但是在图像当中仍应该保留,因为我们要尊重实验事实,这毕竟是我们的第一手资料,是原始数据。)4、怎样根据所画的v-t图像求加速度?(从所画的图像中取两个点,找到它们的纵、横坐标(t1,v1)、(t2,v2),然后代入公式,求得加速度,也就是直线的斜率。在平面直角坐标系中,直线的斜率
3、若出现了个别明显偏离绝大部分点所在直线的点,该如何处理?(对于个别明显偏离绝大部分点所在直线的点,我们可以认为是测量误差过大、是测量中出现差错所致,将它视为无效点,但是在图像当中仍应该保留,因为我们要尊重实验事实,这毕竟是我们的第一手资料,是原始数据。)4、怎样根据所画的v-t图像求加速度?(从所画的图像中取两个点,找到它们的纵、横坐标(t1,v1)、(t2,v2),然后代入公式,求得加速度,也就是直线的斜率。在平面直角坐标系中,直线的斜率四、实践与拓展例1、在探究小车速度随时间变化规律的实验中,得到一条记录小车运动情况的纸带,如图所示。图中A、B、C、D、E为相邻的计数点,相邻计数点的时间间隔为T=0.1s。⑴根据纸带上的数据,计算B、C、D各点的数据,填入表中。
(三)合作交流能力提升教师:刚才我们通过实验了解了小车的速度是怎样随时间变化的,但实验中有一定的误差,请同学们讨论并说出可能存在哪些误差,造成误差的原因是什么?(每个实验小组的同学之间进行热烈的讨论)学生:测量出现误差。因为点间距离太小,测量长度时容易产生误差。教师:如何减小这个误差呢?学生:如果测量较长的距离,误差应该小一些。教师:应该采取什么办法?学生:应该取几个点之间的距离作为一个测量长度。教师:好,这就是常用的取“计数点”的方法。我们应该在纸带上每隔几个计时点取作一个计数点,进行编号。分别标为:0、1、2、3……,测各计数点到“0”的距离。以减小测量误差。教师:还有补充吗?学生1:我在坐标系中描点画的图象只集中在坐标原定附近,两条图象没有明显的分开。学生2:描出的几个点不严格的分布在一条直线上,还能画直线吗?
同学们,孔老夫子有云:逝者如斯夫,不舍昼夜。可见时间是多么神奇。我们来看一首小诗——高士其的《时间伯伯》(多媒体显示),大家齐读一遍。时间有脚吗?(没有)那么,可见这首小诗使用了什么修辞?(拟人)。 我们今天学习的课文文题就源于高士其这首小诗。(板书课题:8.时间的脚印)这课题也采用什么修辞?(拟人)这是一篇科普作品,了解一下它的作者( 看图了解陶世龙)。先来欣赏图片,第一张自然界中的沉积岩、第二张“恐龙化石”、第三张“三叶虫化石”。(屏幕显示)。我们看到的这些岩石,在保存古代生物的同时,还记下了时间的痕迹。那么,岩石是怎样记录时间的呢?带着这个问题,我们一起来学习《时间的脚印》。我们来看看这节课的学习目标。
教学过程一、导入师:我国西南边陲,居住着众多勤劳、勇敢而善良的少数民族,这个单元我们要学习来自边寨的飞歌。在云南,撒尼人民更是热情、好客。听!他们正在邀请我们这些远方的客人留下来与他们共度佳节呢!二、新课学习1.初听歌曲《远方的客人请你留下来》音频。2.分组讨论分析:① 师:歌曲的情绪是怎样的?撒尼族是怎样的一个民族?你是怎样从他们的音乐中听出来的呢?他们又是用什么请远方的客人留下来呢?② 歌曲采用了哪种演唱形式?③ 歌曲表达了当地人民怎样的心情?3.学生讨论。一组生:歌曲的情绪是欢快活泼、热情洋溢的。生:撒尼人民非常热情好客。生:用路旁正在开的鲜花儿,树上等人摘的果子,迎风荡漾的谷穗,招待远方的客人留下来。二组生:领唱与合唱结合的形式。三组生:表现了当地人民热情好客的习俗与风尚。教师适时引导,及时总结(介绍撒尼是彝族的一个分支及有关撒尼人的风土人情。再介绍这首歌在1957年莫斯科举行的第六节世界青年联欢节中获创作金奖。由于采用一名女高音领唱与男高、女高的声部领唱的交替,所以显得音色变化丰富,也是歌曲更加亲切、热情、活泼、生动,且富有趣味性)。4.播放云南简介。
彝族和彝族音乐1、(讲授)彝族是中国西南地区一个具有悠久历史的民族。主要分布在云南、四川、贵州及广西壮族自治区西北部。2、彝族音乐丰富多彩、富有特色,舞蹈多与歌唱相伴。民间叙事长诗《阿诗玛》,塑造了一个美丽、勇敢、坚贞的撒尼姑娘的形象(出示课件,简单介绍)3、彝族的民间乐器有30余种,流传最广的有无膜口琴、葫芦笙、三弦、月琴,以及巴乌、马布和口琴等(出示课件)欣赏《远方的客人请你留下来》1、作于1953年,1954年由中央民族歌舞团及中央歌舞团相继演出,1957年,在莫斯科举行的第六届世界青年联欢节中,这首歌获得金质奖章。2、仔细聆听这首歌曲,回答下列问题:(1)歌曲的情绪是怎样的?(2)歌曲采用了哪种演唱形式?(3)歌曲表达了彝族人民怎样的心情?3、进一步欣赏,加深理解。这是一首混声合唱曲,在演唱过程中,有女声领唱参与其中。歌曲可分两大部分:(1)三个乐段(A、B、B1)。A----女高音声部呈现,男高音声部予以重复;B----女声领唱,而后混声合唱予以呼应;B1是第二乐段的变化重复。(2)第二部分基本与第一部分相同,但第一乐段有所缩减,后面又加了一段尾声。在这一部分里,进一步展示了彝族人民幸福生活的景象,也进一步表达了彝族人民对美好未来、对伟大祖国的祝福。
【活动目标】1、引导幼儿认识物体与物体之间的空间位置关系。2、能够说出什么在什么的上面,什么在什么的下面。 【活动准备】1、球、苹果、玩具狗、各一个。2、各种玩具若干。 【活动过程】一、导入引导幼儿观察1、师:“小朋友们今天我带来了几位好朋友到我们班来做客,想和小朋友们一起玩游戏,你们看这是谁啊?(教师出示篮球一个)。还有一位好朋友它在和小朋友们捉迷藏呢!我们一起来找找看它在哪啊?到底是谁?咦!找到了,原来它藏在书下面啊!快出来跟我们小朋友打个招呼吧”!“小朋友们,你们好!我是你们最喜欢吃的苹果,很高兴和小朋友们一起玩。”
二、活动计划与反思活动一:落下来啦(小班)活动要求:1、对物体落下来的现象感兴趣,有初步的探索欲望。2、学习运用语言、体态动作等表达自己的发现,初步尝试记录。活动准备:活动过程:1、小故事引发幼儿猜测:物体是否会落下来?以激发兴趣。2、观察材料,摆弄物体进行感性探索体验:它们是不是都落下来了?3、第二次探索,比较落体的不同方式。幼儿边玩边交流自己所玩的物体,观察落下来的样子,引导幼儿运用语言、体态动作等表现自己的发现。4、学习记录:观察记录表上贴的物体,引导幼儿选择相应物体尝试后把该物体下落的样子画下来。5、延伸活动:玩落体游戏,如“托气球、吹羽毛”等,启发幼儿观察更多落体现象,并想办法使其落不下来。
【课时安排】 1课时【教学过程】1.回顾梳理、归纳总结。师:我们学过哪些立体图形?生:长方体、正方体、圆柱体、圆锥体师:它们分别有哪些特征?师生共同总结立体图形的特征。 课件演示:长方体的特征:6个面是长方形(特殊情况有两个对面是正方形)相对的面完全相同;12条棱,相对的4条棱长度相等;8个顶点。正方体的特征:6个面都相等,都是正方形;12条棱都相等;8个顶点。圆柱的特征:上下两个面是完全相同的圆形,侧面是一个曲面,沿高展开一般是个长方形。上下一样粗;有无数条高,每条高长度都相等。
2.三角形的分类。师:你能给三角形按照不同的标准进行分类吗?生用自己喜欢的方式整理分类,然后汇报:生:三角形按角分为锐角三角形、直角三角形、钝角三角形。师:什么是锐角三角形、直角三角形、钝角三角形?生:三个角都是锐角的三角形叫做锐角三角形;有一个角是直角的三角形叫做直角三角形;有一个角是钝角的三角形叫做钝角三角形。生:三角形按边分为不等边三角形(三条边都不相等)、等腰三角形(等边三角形) 等腰三角形的两条边相等,等边三角形的三条边都相等。3.四边形分类。师:你能给四边形分类吗?生:四边形分为平行四边形和梯形;平行四边形包括长方形和正方形,长方形又包括正方形;梯形包括等腰梯形和直角梯形。4.直线、射线和线段的关系。小组内互相交流,然后汇报:
活动二:无声的爱播放视频:学校“护学岗”的大哥哥大姐姐们关爱低年级学生的场景和对他们的采访,学生说一说自己的发现和体会,并找一找身边还隐藏的爱心,先小组交流,再全班汇报交流,教师相机引导。设计意图:体会到日常生活中的关爱,把爱心传递下去。活动三:爱心在行动首先,学生将课前搜集的雷锋帮助他人的故事在小组内讲一讲,再全班分享。然后,课件出示问题:怎样把自己的爱心变成行动,传递我们的关爱。教师引导学生说一说能够关爱的对象,可以为他们做的力所能及的事情。板书:用行动传递下去。设计意图:将关爱他人的行动落实在日常生活中。环节三:课堂小结,内化提升学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:回归生活,拓展延伸在生活中主动传递爱。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。
经过探究发现只有10与11出现的概率最大且相等(在探究的过程中提醒学生按求等可能性事件的概率步骤来做,在判断是否等可能和求某个事件的基本数上多启发和引导,帮助学生顺利突破难点。)及时表扬答对的学生,因为这个问题整整过了三个世纪,才被意大利著名的天文学家伽利略解决。后来法国数学家拉普拉斯在他的著作《分析概率论》中,把伽利略的这个解答作为概率的一个基本原理来引用。(适当的渗透一些数学史,学生对学习的兴趣更浓厚,可以激发学生课后去进一步的探究前辈们是如何从不考虑顺序到想到考虑顺序的)8、课堂小结:通过这节课的学习,同学们回想一下有什么收获?1、基本事件和等可能性事件的定义。2、等可能性事件的特征:(1)、一次试验中有可能出现的结果是有限的。(2)、每一结果出现的可能性相等。3、求等可能性事件概率的步骤:(1)审清题意,判断本试验是否为等可能性事件。
(3)例题1的设计,一方面是帮助学生从生实际问题背景中逐步建立古典概型的解题模式;另一方面也可进一步理解古典概型的概念与特征,重点突破“等可能性”这个理解的难点。 采用学生分组讨论的方式完。在整个活动中学生作为活动设计者、参与者.主持者;老师起到组织和指导的作用。为了让学生进一步认识和理解随机思想,认识和理解概率的含义—概率是一种度量,是对随机事件发生可能性大小的一种度量.让学生观察图表,得出对称的规律。预计学生在构建等可能性事件模型时要花一些时间。(4)例题1的拓展设计:看学生能否能在例1的基础上利用类比的思想来建构数学模型,并得出求事件 A包含的基本事件数常用的方法有树状图法,枚举法,图表法,排列组合法等方法。适当的渗透一些数学史,学生对学习的兴趣更浓厚,可以激发学生课后去进一步的探究前辈们是如何从不考虑顺序到想到考虑顺序的
(一)观图激趣、设疑导入 出示课件的第一张幻灯片。师:老师这里有三道题哪位同学会做?1、已知路程和时间,怎样求速度?2、已知总价和数量,怎样求单价?3、已知工作总量和工作时间,怎样求工作效率?生1:速度=路程÷时间。生2:单价=总价÷数量。生3:工作效率=工作总量÷工作时间。师:同学们可真棒!这节课我们就来研究这些数量间的一些规律和特征。你们准备好了吗?生:准备好了!(板书:成正比例的量)【设计意图】引发学生学习的兴趣,唤起学生已有的只是经验,更好地进行新旧知识的结合,也有利于引导学生发现数量关系内在的规律。(二)探究新知(PPT课件出示例1)文具店有一种铅笔,销售的数量与总价的关系如下表。 数量/支12345678…总价/元3.5710.51417.52124.528…观察上表,回答下面的问题。(1)表中有哪两种量?(2)总价是怎样随着数量的变化而变化的?(3)相应的总价与数量的比分别是多少?比值是多少?1.探究数量与总价两个量之间的关系。师:仔细观察这张表格,它为我们提供了哪些数学信息?生:给我们提供了文具店销售彩带的数量是1,2,3,4,5,6,7,8米,总价分别是:3.5, 7,10.5,14,17.5,21,24.5,28元。师:表中有哪两种量?生:有数量和总价两种量。师:总价是怎样随着数量的变化而变化的?生:总价是随数量的增加而增加的。师:相应的总价与数量的比分别是多少?比值是多少?生1:=3.5 =3.5 =3.5 =3.5 =3.5 =3.5 =3.5 =3.5生2:相对应的总价和数量的比的比值是一定的。师:总价与数量的比值表示什么?
3.设计实验。怎样测量一粒黄豆的体积。这是在第二题的基础上进行的一个设计实验,再次回到“有趣的测量”,让学生不仅会计算,还要会自己想办法测量生活中的很多不规则物体的体积,这也是我们这节课要达到的目的。练习完之后教师再适时将学生带进数学万花筒,感受两千多年前阿基米德的风采,激发了学生对数学的兴趣,增强他们主动探索科学知识的意识。(四)、总结回顾评价反思在这一环节让学生讲一讲收获、谈一谈感受,让学生自己评价自己,使学生体验到成功探索和解决问题的乐趣,树立学好数学的信心,为学生自主探索提供更为广阔的空间六、说板书设计本节课我采用重点内容提纲式板书,简单明了,重点突出。利用不同色彩的区分吸引学生的注意力,突出“转化”这一重要思想。
【教学过程】(一)观图激趣、设疑导入 出示课件的第一张幻灯片。1、成正比例的量有什么特征?2、正比例关系式。生1:两种相关联的量,一种量变化,另一种量也随着变化。生2:两种量中相对应的两个量的比值(商)一定。生3:=k(一定)。师:同学们非常棒!我们今天继续学习两种量的另外一种关系。 (板书:成反比例的量)【设计意图】这种方法的导入,简简单单的一道练习题,把学生的注意力吸引到本节主要内容上来,激起学生的好奇心,真的还有另外一种关系!我可得好好听一听。这样在学习反比例时学生会始终保持高度的精神集中,有利于教师教学顺利进行。(二)探究新知教学例2,探究反比例的意义,理解成反比例的量。1、出示PPT课件回答问题。杯子的底面积与水的高度的变化情况如下表。 杯子的底面积/cm²1015203060…水的高度/cm302015105…观察上表,回答下面的问题。(1)表中有哪两种量?(2)水的高度是怎样随着杯子底面积的大小变化而变化的?(3)相对应的杯子的底面积与水的高度的乘积分别是多少?生1:表中有杯子的底面积和水的高度这两种量。生2:从表中可以看出:水的高度随着杯子的底面积的变大而不断变小,这两种量是相关联的两种量。生3:我来回答(3),相对应的杯子的底面积与水的高度的乘积分别是:10×30=15×20=20×15=30×10=60×5=…=300。生4:乘积一定。师:底面积与高的乘积表示的是什么?生:水的体积。(板书)师:你会算出水的体积吗?生:会。(学生计算,教师出示课件订正)2、揭示反比例的意义。师:积是300,实际就是倒入杯子的水的体积。同学们能用式子表示出它们的关系吗?生:它们的关系是:底面积×高=体积。师:同学们,我们用概括正比例意义时的方法来概括一下反比例的意义吧!生:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。(板书反比例的意义)3、用字母表示反比例关系:xy=k(一定)。(板书)4、牛刀小试。锅炉房烧煤的天数与每天烧煤的吨数如下表: 每天烧煤的吨数/吨11.522.53烧煤的天数/天3020151210(1)表中有哪两种量?它们是不是相关联的量?(2)写出几组这两种量中相对应的两个数的积,并比较大小,说一说这个积表示什么。(3)烧煤的天数与每天烧煤的吨数成反比例吗?为什么?【参考答案】 (1)每天烧煤的吨数和烧煤的天数,是相关联的量。 (2)1×30=30 1.5×20=30 2×15=30 2.5×12=30 3×10=30 积相等,这个积表示这批煤的总吨数。 (3)成反比例,因为烧煤的天数与每天烧煤的吨数的积一定。【设计意图】学生通过观察、发现、概括经历了整个学习过程,逐步形成定向思维方式,为学会学习打好基础。