全体四人小组讨论编创间奏节奏变化,并进行练习!(巡视引导)之后,全体同学集中汇报各自小组的编创成果,如下:(1) X —(2) X X X其余同学评价该组的编创成果全体学生随乐用新的间奏节奏型拍手演唱歌曲(播放音乐)创造是发挥学生想象力和思维潜能的音乐学习领域,引导学生进行即兴式探究创造活动,是学生积累音乐创作经验和发掘创造思维能力的过程与方法。今天这节课,你有哪些学习收获?学生就会提出自己的收获,如:学会了这首歌曲《拍手拍手》,认识了“﹥”,知道了朋友间的友谊、友情是可以通过掌声来传递的……等等!引导学生对自己学习情况进行梳理和小结,明确各自在当堂课中的音乐学习信息,来促进今后的音乐学习质量和效率的提升!六、说板书我的板书设计是根据教学中需要和学生交流的关键知识点设计的,便于学生在总结学习收获时,梳理自己的音乐学习信息,明确学习重难点,并加深学习印象!
1.能边画拍边用柔和的声音演唱《榕树爷爷》 ,并能说说二声部合唱的特点。2.能用不同的音色、速度和力度表现编创的旋律短句。 6.懂得变声期嗓子的保护知识,学会吹奏竖笛曲。一、懂得变声期嗓音保护教师结合人体喉部解剖图向学生简单介绍变声期的相关知识,指导学生懂得基本生理常识,明白保护嗓音的重要性。1.变声期是属于正常的生理现象,不要因为歌唱困难而产生自卑心理,也不要嘲笑音出于变声期而歌唱困难的同学。2.要避免在各种场合大声喊唱、喊叫。3.在生活中注意对嗓音的保护,避免过冷、过热或刺激辛辣的饮食,多喝水多吃蔬菜水果,保证充足睡眠等等。二、学唱歌曲《榕树爷爷》
4、读第3小节。加快脚步,我们现在站到了瀑布的脚下。又看到了什么?自己读,想想瀑布又是怎样的?指名说。(示图)分别指导读好这两个句子。男女合作读这一小节。[这一段的学习,先引导学生想象,发展学生想象力;再适当运用多媒体,提升孩子的感悟,升华情感,引导孩子达到学文、入情的高潮。](四)以读代讲 情感升华瀑布多么美呀!再读,你会更加感受到它的美。下面我们随着动人的音乐,一起美美地读一读这首优美的诗歌吧!配乐齐读。大自然中还有很多象庐山瀑布这样美丽的风景,利用空闲时间,请你走进大自然,去欣赏更多的美景吧!(五)作业1、背诵小诗。(全体都完成)2、如果你愿意,画一画你亲眼见到的或者从电视等其他地方看到的瀑布,为它配上一首自己写的小诗。(自主选择)
⑹、完整听赏《红旗颂》。思考:你能感觉到音乐情绪发生变化了吗?请用手势示意。请学生听辨出①号角主题、②歌唱性主题、③进行性主题,并在聆听过程中用手势示意,强化学习的目标,增强对作品的理解和感受。5、课堂小结:比较相同主题(红旗)不同体裁(歌曲、乐曲)的表演风格特点。相同点:都能以真挚的情感打动人的心灵,引发内心的共鸣。不同点:歌曲--动听的旋律,动人的歌词,动情的演唱,使得歌曲在表达音乐情绪,刻画音乐形象上更容易让人理解和感受。乐曲--丰富的和声,多层次的配器,大型的管弦乐队,使得乐曲在表达上更到位,更有层次,更感人肺腑,得到的感受更深刻难忘。6、布置作业:课后唱背红旗主题,尝试为红旗主题填上合适的歌词并演唱出来,下节课同学之间交流一下,比一比谁的创作更精彩。
教学内容教法学法意图四、揭示课题(一)、揭示课题1、师:以前我们唱歌都是大家一起唱,那叫齐唱,大家能不能帮我们今天演唱的这种形式取个名字呢?(轮唱)2、师:那谁能简单的说一下轮唱要怎么样演唱?3、学生举出其它的卡农例子。(二)、听辩游戏:给出四段音乐,请学生欣赏并辨别哪一段是卡农曲?教师小结。把自己通过亲身体验的感受用语言归纳课题—轮唱,并从轮唱引伸到卡农。让学生学会自己总结,培养学生自主的学习方式。五、创编拓展(到了第三个景点“三宝树”)1、分组编创卡农节目,可以是做动作、读歌词、打节奏等等,也可结合歌曲《法国号》编创轮唱。2、分组展示。3、教师小结把自己的作品表现出来。培养学生协作探索、自主学习的能力。
歌曲处理部分我采取了对比式的教学方法,由于此曲有两遍“悄悄地、悄悄地、悄悄地”,而前后两遍的旋律是有变化的,相似之中又有不同之处,在演唱过程中我单独拿出这两个旋律进行视唱对比,让学生自主听辨,这样帮助孩子更好、更准确的演唱。这一环节我主要采取探究式和对比式两种教学方法。我的第四环节是“动”情——感动之情,首先在欣赏前我把老师比作米兰,然后提出疑问“为什么把老师比作米兰而不是蜡烛、春蚕呢?”让孩子们在歌曲中找到答案。孩子们聆听这首歌曲后,我问学生“你把老师比作什么?为什么呢?”探索学生的心声,然后在师与生的相互探讨中让孩子们懂得一支粉笔写就人生的轨迹;两鬓染霜谱成人生绚丽的乐章;三尺讲台留下人生的灿烂和辉煌!这就是我们可敬的老师。最后我朗诵了一首配乐诗朗诵歌颂老师,让孩子和我的心中都漾起那份沉甸甸的师母般的爱。
4.合作表演。(1)组内合作:组内成员合作。各组同时进行全故事的预演。(2)组外合作:组与组合作,进行分段表演,即各组分别表演某个场景,共同合作表演整个故事。设计亮点:这一环节虽是表现环节,但也是再感受、再创造的环节。它通过演的方式加深学生对音乐的理解,起到了以演代听的效果。学生参加或观看表演时,便对全曲进行了整体欣赏。这就解决了因音乐较长而学生注意力短的问题。在表现方面,注重组与组、组员之间的分工合作。四)归纳总结课外延伸同学们:《彼得与狼》交响童话,它给人们的启示是:团结就是力量,机智勇敢的去斗争,就能够战胜凶恶的敌人。这一童话故事受到世界各个地区的小朋友喜爱。因此,被制作成不同的剧目进行演绎,请同学们在课后欣赏不同剧目的《彼得与狼》。
(三)教学重点:感受歌曲优美的情绪,体会人类与动物和谐相处的温暖。(四)教学难点:歌曲中连音与跳音的演唱处理以及训练学生轻声高位置的声音状态。二、说学法学生是学习的主体,要让学生能主动积极地学习,选择方法是很重要的。根据教材的内容和学生年龄特点,我在学法的指导时紧紧围绕教学目标,通过“听”“唱”“动”“奏”“演”相结合的方法,调动学生的积极性,使每位学生都参与到活动中来。用听唱法和接唱法(师生接唱、男女生接唱、小组接唱)学习歌曲,更容易调动学生学习的兴趣,有利于学生学习歌曲。三、说教法在教学中我主要采用情景教学法、欣赏法和练习法,运用音乐教学光盘,利用其视听结合,声像一体,形象性强的优点,为学生创设一个春的环境。在这种环境中,让学生感受自然的美、音乐的美。针对三年级学生好玩、好动的心理,我还编配了动作,既解决了难点,也实施了寓教于乐的教学策略。
尉氏鸭蛋及养鸭基地贾鲁河畔尉氏烩面是河南烩面的一个重要分支,与其它地方不同的是尉氏烩面是羊肉浓汤锅中下面并取汤,尉氏烩面是以独家祖传秘方调制的香料配上滚滚的羊汤而成。放入羊肉丁、葱花、香菜或是五香菜,芝麻酱,同时以个人口味放入用牛羊油泼的油辣椒,浓香味美、回味无穷······人们说到尉氏县洧川镇,首先想到的一定会是洧川豆腐。有许多人也是因为洧川豆腐,才认识了洧川镇。因为这小小的豆腐在洧川镇的周边县市实在太有名了,迄今已有2000多年的历史。 洧川豆腐与众不同之处在于其表面呈琥珀色,切刀处为纯白色,韧性十足,能用麻绳串起来,可用秤钩挂着称,放在锅里越煮越筋,烹炸煎炒则风味各异。由于洧川豆腐的制作一直采用传统工艺,2011年,洧川豆腐被评为河南省非物质文化遗产。
分式1x2-3x与2x2-9的最简公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最简公分母为x(x+3)(x-3).方法总结:最简公分母的确定:最简公分母的系数,取各个分母的系数的最小公倍数;字母及式子取各分母中所有字母和式子的最高次幂.“所有字母和式子的最高次幂”是指“凡出现的字母(或含字母的式子)为底数的幂的因式选取指数最大的”;当分母是多项式时,一般应先因式分解.【类型二】 分母是单项式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先确定最简公分母,找到各个分母应当乘的单项式,分子也相应地乘以这个单项式.解:(1)最简公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最简公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最简公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.
探究点二:列分式方程某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方程为()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:设原计划每天生产x个,则实际每天生产(x+4)个,根据题意可得等量关系:(原计划20天生产的零件个数+10个)÷实际每天生产的零件个数=15天,根据等量关系列出方程即可.设原计划每天生产x个,则实际每天生产(x+4)个,根据题意得20x+10x+4=15.故选A.方法总结:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.三、板书设计1.分式方程的概念2.列分式方程本课时的教学以学生自主探究为主,通过参与学习的过程,让学生感受知识的形成与应用的价值,增强学习的自觉性,体验类比学习思想的重要性,然后结合生活实际,发现数学知识在生活中的广泛应用,感受数学之美.
解析:(1)先把第二个分式的分母y-x化为-(x-y),再把分子相加减,分母不变;(2)先把第二个分式的分母a-b化为-(b-a),再把分子相加减,分母不变.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法总结:分式的分母互为相反数时,可以把其中一个分母放到带有负号的括号内,把分母化为完全相同.再根据同分母分式相加减的法则进行运算.三、板书设计1.同分母分式加减法法则:fg±hg=f±hg.2.分式的符号法则:fg=-f-g,-fg=f-g=-fg.本节课通过同分母分数的加减法类比得出同分母分式的加减法.易错点一是符号,二是结果的化简.在教学中,让学生参与课堂探究,进行自主归纳,并对易错点加强练习.从而让学生对知识的理解从感性认识上升到理性认识.
由于任何一个一元一次不等式都能写成ax+b>0(或<0)的形式,而此式的左边与一次函数y=ax+b的右边一致,所以从变化与对应的观点考虑问题,解一元一次不等式也可以归结为两种认识:⑴从函数值的角度看,就是寻求使一次函数y=ax+b的值大于(或小于0)的自变量x的取值范围。⑵从函数图像的角度看,就是确定直线y=ax+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。教学过程中,主要从以上两个角度探讨一元一次不等式与一次函数的关系。1、“动”―――学生动口说,动脑想,动手做,亲身经历知识发生发展的过程。2、“探”―――引导学生动手画图,合作讨论。通过探究学习激发强烈的探索欲望。3、“乐”―――本节课的设计力求做到与学生的生活实际联系紧一点,直观多一点,动手多一点,使学生兴趣高一点,自信心强一点,使学生乐于学习,乐于思考。4、“渗”―――在整个教学过程中,渗透用联系的观点看待数学问题的辨证思想。
解析:(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答;(2)根据线段垂直平分线的性质判断出AB=BF即可解答.解:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中点,∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD;(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法总结:此题主要考查线段的垂直平分线的性质等几何知识.线段垂直平分线上的点到线段两个端点的距离相等,利用它可以证明线段相等.探究点二:线段垂直平分线的作图如图,某地由于居民增多,要在公路l边增加一个公共汽车站,A,B是路边两个新建小区,这个公共汽车站C建在什么位置,能使两个小区到车站的路程一样长(要求:尺规作图,保留作图痕迹,不写画法)?
解析:根据AB∥CD,∠ACD=120°,得出∠CAB=60°.再根据尺规作图得出AM是∠CAB的平分线,即可得出∠MAB的度数.解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺规作图知AM是∠CAB的平分线,∴∠MAB=12∠CAB=30°.方法总结:通过本题要掌握角平分线的作图步骤,根据作图明确AM是∠BAC的角平分线是解题的关键.三、板书设计1.角平分线的性质:角平分线上的点到这个角的两边的距离相等.2.角平分线的作法本节课由于采用了动手操作以及讨论交流等教学方法,从而有效地增强了学生对角以及角平分线的性质的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生在性质的运用上还存在问题,需要在今后的教学与作业中进一步的加强巩固和训练
【类型二】 分式的约分约分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根据分式的基本性质把公因式约去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法总结:约分的步骤;(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.三、板书设计1.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法则:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;若只改变其中一个符号或三个全变号,则分式的值变成原分式值的相反数.本节课的流程比较顺畅,先探究分式的基本性质,然后顺势探究分式变号法则.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.
解析:由分式有意义的条件得3x-1≠0,解得x≠13.则分式无意义的条件是x=13,故选C.方法总结:分式无意义的条件是分母等于0.【类型三】 分式值为0的条件若使分式x2-1x+1的值为零,则x的值为()A.-1 B.1或-1C.1 D.1和-1解析:由题意得x2-1=0且x+1≠0,解得x=1,故选C.方法总结:分式的值为零的条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.三、板书设计1.分式的概念:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有无意义的条件:当B≠0时,分式有意义;当B=0时,分式无意义.3.分式AB值为0的条件:当A=0,B≠0时,分式的值为0.本节采取的教学方法是引导学生独立思考、小组合作,完成对分式概念及意义的自主探索.提出问题让学生解决,问题由易到难,层层深入,既复习了旧知识又在类比过程中获得了解决新知识的途径.在这一环节提问应注意循序性,先易后难、由简到繁、层层递进,台阶式的提问使问题解决水到渠成.
解析:(1)首先提取公因式13,进而求出即可;(2)首先提取公因式20.15,进而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法总结:在计算求值时,若式子各项都含有公因式,用提取公因式的方法可使运算简便.三、板书设计1.公因式多项式各项都含有的相同因式叫这个多项式各项的公因式.2.提公因式法如果一个多项式的各项有公因式,可以把这个公因式提到括号外面,这种因式分解的方法叫做提公因式法.本节中要给学生留出自主学习的空间,然后引入稍有层次的例题,让学生进一步感受因式分解与整式的乘法是逆过程,从而可用整式的乘法检查错误.本节课在对例题的探究上,提倡引导学生合作交流,使学生发挥群体的力量,以此提高教学效果.
∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直线AD垂直平分线段EF.方法总结:当一条直线上有两点都在同一线段的垂直平分线上时,这条直线就是该线段的垂直平分线,解题时常需利用此性质进行线段相等关系的转化.三、板书设计1.线段的垂直平分线的性质定理线段垂直平分线上的点到这条线段两个端点的距离相等.2.线段的垂直平分线的判定定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因此本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).解析:(1)根据已知计算过程直接得出因式分解的方法即可;(2)根据已知分解因式的方法可以得出答案;(3)由(1)中计算发现规律进而得出答案.解:(1)因式分解的方法是提公因式法,共应用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需应用上述方法2016次,结果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法总结:解决此类问题需要认真阅读,理解题意,根据已知得出分解因式的规律是解题关键.三、板书设计1.提公因式分解因式的一般步骤:(1)观察;(2)适当变形;(3)确定公因式;(4)提取公因式.2.提公因式法因式分解的应用本课时是在上一课时的基础上进行的拓展延伸,在教学时要给学生足够主动权和思考空间,突出学生在课堂上的主体地位,引导和鼓励学生自主探究,在培养学生创新能力的同时提高学生的逻辑思维能力.