提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

人教版新课标小学数学二年级下册克与千克教案2篇

  • 北师大初中九年级数学下册商品利润最大问题2教案

    (8)物价部门规定,此新型通讯产品售价不得高于每件80元。在此情况下,售价定为多少元时,该公司可获得最大利润?最大利润为多少万元?若该公司计划年初投入进货成本m不超过200万元,请你分析一下,售价定为多少元,公司获利最大?售价定为多少元,公司获利最少?三、小练兵:某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,销售量y(件)与销售单价x(元)之间的函数关系式为y= –20 x +1800.(1)写出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(2)若童装厂规定该品牌童装销售单价不低于76元,不高于78元,那么商场销售该品牌童装获得的最大利润是多少元?(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,那么商场销售该品牌童装获得的最大利润是多少元?

  • 北师大版小学数学五年级上册《找最小公倍数》说课稿

    1.教学内容:本课是北师大版第三单元《分数》:《找最小公倍数》第一课时。是引导学生在自主参与、发现、归纳的基础上认识并建立并理解公倍数和最小公倍数的概念的过程。并总结归纳出一些找最小公倍数的方法。2.教材编写意图:五年级学生的生活经验和知识背景比较丰富,新课程标准要求教材选择具有现实性和趣味性的素材,采取螺旋上升的方式,由浅入深地促使学生在探索与交流中建立公倍数与最小公倍数的概念。在此之前,学生已经了解了整除、倍数、因数以及公因数和最大公因数。通过写出几个数的倍数,找出公有的倍数,再从公有的倍数中找出最小的一个,从而引出公倍数与最小公倍数的概念。接着用集合图形象地表示出两个数的倍数,以及这两个数公有的倍数,这一内容的学习也为今后的通分、约分学习打下的基础,具有科学的、严密的逻辑性。(二)对教材的处理意见1.教材中让学生找4和6的倍数,进而引出公倍数和最小公倍数的概念,利于学生建立对概念的理解。

  • 北师大版小学数学五年级上册《分数的基本性质》说课稿

    (四)引导观察,发现规律1.解决的问题(1)观察发现分数的基本性质(2)培养学生观察--探索--抽象--概括的能力。2.教学安排(1)提出问题:通过验证这两组分数确实相等,那么,它们的分子、分母有什么变化规律呢?(2)全班交流:不论学生的观察结果是什么,教师要顺应学生的思维,针对学生的观察方法,进行引导性评价①观察角度的独特性②观察事物的有序性③观察事物的全面性等。(注意观察的顺序从左到右、从右到左)引导层次一:你发现了1/2和2/4两个数之间的这样的规律,在这个等式中任意两个数都有这样的规律吗?引导学生对1/2和4/8、2/4和4/8每组中两个数之间规律的观察。引导层次二:在1/2=2/4=4/8中数之间有这样的规律,在9/12=6/8=3/4中呢?引导层次三:用自己的话把你观察到的规律概括出来。

  • 北师大版小学数学五年级上册《3的倍数的特征》说课稿

    一个数各个位上的数字之和如果是3的倍数,那么,这个数一定是3的倍数。否则,这个数就不是3的倍数。4、检验结论。(1)我们从100以内的数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?(2)利用100以内数表来验证。(3)延伸到三位数或更大的数。如:573、753、999、1236、2244、7863……(4)学生自己写数并验证,然后小组交流,观察得出的结论是否相同。在本环节,我用充足的时间让小组代表上讲台展示成果,说出各自的思考过程,对学生的回答我给予充分的肯定和表扬,引导学生验证自己的发现是否正确,最后达成共识:一个数的各位上的数的和是3的倍数,这个数就3的倍数(板书)。这样便巧妙地突出本课的重点,突破了本课的难点。

  • 北师大版小学数学五年级上册《分数的再认识(一)》说课稿

    一、说教材1、教学内容北师大版小学数学五年级上册第五单元的第一课时《分数的再认识(一)》。2、教材分析本课是学生在三年级初步认识分数的基础上,进行深入和拓展的。在三年级,学生已结合情境和直观操作,体验了分数产生的过程,认识了整体“1”,初步了解了分数的意义,能认、读、写一些简单的分数。本节课是在此基础上,进一步引导学生认识和理解分数,为后面进一步学习、运用分数知识做好铺垫。本课的课题是《分数的再认识》,这个“再认识”,我想应该有两方面的含义,一是进一步认识、理解分数的意义,二是结合具体的情境,让学生体会“整体”与“部分”的关系,体会“整体不同,同一个分数所对应的数量也不同”,从而体验数学知识形成的全过程。3、教学目标根据教学内容和学生的认知能力,我将本节课的教学目标制定如下:

  • 北师大版小学数学五年级上册《成长的脚印》说课稿

    活动3,估老虎头和枫叶的面积。图1是进一步巩固转化的方法;图二是灵活变式。学生体验到在实际生活中不只可以将不规则图形转化成一个基本图形,也可转化成几个基本图形再求面积。学生的思想层次得到提升。活动4,估计三个圆的面积。旨在体会面积单位越小,估计的面积越接近精确值。为学生今后会学习到的“密铺”知识打下基础。活动5,小组合作估手掌的面积。这个活动是对这节课所学知识的综合运用。如何估最简便?从画手掌轮廓到选择合适的方法估计,综合训练学生解决数学问题的能力。五个活动层层递进、层层深入,学生逐步体会到用转化成基本图形的方法估计不规则图形的面积的优越性,并能选择合适的转化方法解决实际问题,从而突破教学重难点。

  • 北师大版小学数学五年级上册《精打细算》说课稿

    二、学生分析本节课是一节计算教学课,是在学生学习了整数除法及其意义的基础上进行学习的,掌握算法和探究算理是计算教学的两大任务,针对本班的学生对于整数除法计算知识掌握比较好,基础知识扎实,学生善于独立思考、发现问题,同时也具备一定的自学能力。但需要在教师适当的引导和启发下,来顺利完成本节课的学习任务。三、教学方法基于对课标的理解教材学生的分析我采用了以下的教学方法,通过情境的创设,首先引导学生正确获取信息、分析信息,提出相应的数学问题,并在讨论解决问题策略的基础上,鼓励学生从已有的知识经验入手,努力探索新知识;充分发挥小组合作学习的优势,给学生提供充分从事数学活动的机会,计算方法多样化。再在总结比较的基础上,引导学生重点掌握除数是整数的小数除法的竖式计算方法,最后将学生所学的新知识进一步与生活实际联系起来,巩固深化。

  • 北师大版小学数学五年级上册《谁打电话时间长》说课稿

    (1)、创设情境,提出数学问题。出示主题图,中秋节到了,淘气和笑笑通过打电话的方式来表达对远方亲人的思念,从这幅图中你能得到哪些数学信息,能提出什么数学问题。学生很容易就找到数学信息“笑笑打国内长途,每分钟0.3元,共花5.1元;淘气打国际长途,每分钟7.2元,共花54元。”根据这些信息你能提出哪些数学问题呢?学生可能会说“笑笑打电话的时间是多少分?淘气打电话的时间是多少分?”还有的同学会提出“笑笑和淘气谁打电话的时间长?”等等,你能估一估淘气和笑笑谁打电话的时间长吗?(2)估算谁打电话时间长?通过估算,培养学生的估算意识,提高估算能力,丰富学生的素养,发展数感。在这里我分为三步:首先让学生说说是怎样估算的;其次指名学生说说估算的过程;最后评价和鼓励估算方法的合理性。

  • 北师大版小学数学五年级上册《调查生活垃圾》说课稿

    (三)探究新知,建立模型这一环节是课堂教学的主体部分,是学习知识、培养能力的主要途径。先是让学生独立思考,讨论交流,在具体的生活情境中让整个学习过程充满生活气息,使学生学会借助生活经验思考探索问题,培养他们运用数学知识解决日常生活中的实际问题的能力,获得分析问题和解决问题的一些基本方法,培养应用意识。(四)归纳总结,发现规律通过总结,使学生盲目无序的思考变得有序,使生活化的思维方式得以数学化,使宽泛肤浅的认识得以提炼和升华。(五)巩固练习,拓展延伸通过学习,了解学生本节课的掌握情况。体现了数学的真正价值,数学来源于生活,又应用于生活。(六)课堂小结,课后延伸使学生在重温学习的过程中获得积极的情感体验,使知识的脉络更清晰。

  • 北师大版小学数学五年级上册《组合图形的面积》说课稿

    (二)导学释疑在这一环节中,我首先用课件出示例题“智慧老人准备给客厅铺上地板,算一算智慧老人客厅面积有多大?”,创设了智慧老人家铺地板遇到困难请同学们帮忙的情境,引导学生通过以下三方面展开独学、对学、群学,以达成学习目标:1.我们不妨先来估算一下客厅的面积大约是多少?(设计估一估的教学活动,并不是蜻蜓点水,而是在学生思考之后,有意识的引导,从而培养学生的估算意识,同时也是对后面精算的解决方法的一个铺垫和启示。)2.独立思考,小组交流,展示汇报学习情况(这是本节课的重要环节,在学生解决组合图形面积时,重视把学生的思维过程充分暴露出来,首先,学生通过自己独立思考,得出解决问题的方法;然后通过小组和全班交流,使学生学会了别人的方法;最后,从这些方法中,比较、反思、知道最简便的方法。)3.看教科书88页内容。(一方面可以让学生对照教科书检查自己的探究过程,另一方面可以让学生对所学知识进行内化整理)

  • 北师大初中数学八年级上册一次函数与正比例函数1教案

    煤的价格为400元/吨,生产1吨甲产品除需原料费用外,还需其他费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完,设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.(1)写出m与x的关系式;(2)写出y与x的函数关系式.(不要求写自变量的取值范围)解析:(1)因为矿石的总量一定,当生产的甲产品的数量x变化时,那么乙产品的产量m将随之变化,m和x是动态变化的两个量;(2)题目中的等量关系为总利润y=甲产品的利润+乙产品的利润.解:(1)因为4m+10x=300,所以m=150-5x2.(2)生产1吨甲产品获利为4600-10×200-4×400-400=600(元);生产1吨乙产品获利为5500-4×200-8×400-500=1000(元).所以y=600x+1000m.将m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法总结:根据条件求一次函数的关系式时,要找准题中所给的等量关系,然后求解.

  • 北师大初中七年级数学上册探索与表达规律教案1

    (1)依照此规律,第20个图形共有几个五角星?(2)摆成第n个图形需要几个五角星?(3)摆成第2015个图形需要几个五角星?解析:通过观察已知图形可得:每个图形都比其前一个图形多3个五角星,根据此规律即可解答.解:(1)根据题意得,第1个图中,五角星有3个(3×1);第2个图中,五角星有6个(3×2);第3个图中,五角星有9个(3×3);第4个图中,五角星有12个(3×4);∴第n个图中有五角星3n个.∴第20个图中五角星有3×20=60个.(2)摆成第n个图形需要五角星3n个.(3)摆成第2015个图形需要6045个五角星.方法总结:此题首先要结合图形具体数出几个值,注意由特殊到一般的分析方法.此题的规律为摆成第n个图形需要3n个五角星.三、板书设计教学过程中,强调学生自主探索和合作交流,经历观察、操作、验证、归纳、分析、猜想、抽象、积累、类比、转化等思维过程,从中获得数学知识与技能,体验教学活动的方法,同时升华学生的情感态度和价值观.

  • 北师大初中数学八年级上册二次根式的运算1教案

    1.会用二次根式的四则运算法则进行简单地运算;(重点)2.灵活运用二次根式的乘法公式.(难点)一、情境导入下面正方形的边长分别是多少?这两个数之间有什么关系,你能借助什么运算法则或运算律解释它?二、合作探究探究点一:二次根式的乘除运算【类型一】 二次根式的乘法计算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法总结:几个二次根式相乘,把它们的被开方数相乘,根指数不变,如果积含有能开得尽方的因数或因式,一定要化简.【类型二】 二次根式的除法计算a2-2a÷a的结果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故选C.

  • 北师大初中数学八年级上册二次根式及其化简1教案

    方法总结:(1)若被开方数中含有负因数,则应先化成正因数,如(3)题.(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(因式),即化为最简二次根式(后面学到).探究点三:最简二次根式在二次根式8a,c9,a2+b2,a2中,最简二次根式共有()A.1个 B.2个C.3个 D.4个解析:8a中有因数4;c9中有分母9;a3中有因式a2.故最简二次根式只有a2+b2.故选A.方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式.三、板书设计二次根式定义形如a(a≥0)的式子有意义的条件:a≥0性质:(a)2=a(a≥0),a2=a(a≥0)最简二次根式本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系,加深学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否确认结果的合理性等等.

  • 北师大初中数学八年级上册应用二元一次方程组——鸡兔同笼1教案

    解:设甲班的人数为x人,乙班的人数为y人,根据题意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人数为48人,乙班的人数为45人.方法总结:设未知数时,一般是求什么,设什么,并且所列方程的个数与未知数的个数相等.解这类问题的应用题,要抓住题中反映数量关系的关键字:和、差、倍、几分之几、比、大、小、多、少、增加、减少等,明确各种反映数量关系的关键字的含义.三、板书设计列方程组,解决问题)一般步骤:审、设、列、解、验、答关键:找等量关系通过“鸡兔同笼”,把同学们带入古代的数学问题情景,学生体会到数学中的“趣”;进一步强调数学与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神;进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.

  • 北师大初中数学八年级上册认识二元一次方程组1教案

    小刘同学用10元钱购买两种不同的贺卡共8张,单价分别是1元与2元.设1元的贺卡为x张,2元的贺卡为y张,那么x,y所适合的一个方程组是()A.x+y2=10,x+y=8 B.x2+y10=8,x+2y=10C.x+y=10,x+2y=8 D.x+y=8,x+2y=10解析:根据题意可得到两个相等关系:(1)1元贺卡张数+2元贺卡张数=8(张);(2)1元贺卡钱数+2元贺卡钱数=10(元).设1元的贺卡为x张,2元的贺卡为y张,可列方程组为x+y=8,x+2y=10.故选D.方法总结:要判断哪个方程组符合题意,可从题目中找出两个相等关系,然后代入未知数,即可得到方程组,进而得到正确答案.三、板书设计二元一次方程组二元一次方程及其解的定义二元一次方程组及其解的定义列二元一次方程组通过自主探究和合作交流,建立二元一次方程的数学模型,学会逐步掌握基本的数学知识和方法,形成良好的数学思维习惯和应用意识,提高解决问题的能力,感受数学创造的乐趣,增进学好数学的信心,增加对数学较全面的体验和理解.

  • 初中数学北京版七年级下册《不等式的基本性质》说课稿

    一、关于教学目标的确定:第五章的主要内容是一元一次不等式(组)的解法及其在简单实际问题中的探索与应用。探索不等式的基本性质是在为本章的重点一元一次不等式的解法作准备。不等式的基本性质3更是本章的难点。可是说不等式的基本性质这个概念既是不等式这一章的基础概念又是学生学习的难点。因此我选择此节课说课。教参指导我们:教学要注重和学生已有的学习经验和生活实际相联系,注重让学生经历和体会“从实际问题中抽象出数学模型,并回到实际问题中解释和检验”的过程。注重“概念的实际背景与形成过程”的教学。使学生在熟悉的实际问题中,在已有的学习经验的基础上,经历“尝试—猜想—验证”的探索过程,体会“转化”的思想方法,体会数学的价值,激发学习兴趣。在教学中要渗透函数思想。运用数学中归纳、类比的方法,理解方程与不等式的异同点。

  • 北师大版初中数学八年级下册不等式的基本性质说课稿

    [设计意图]节环节的设置是为了使学生在掌握不等式性质的基础之上,加以拓展的作业,使课程的内容不但能满足全体学生需求,更能满足学有余力的学生得到更大收获,从数轴上获取信息来完成填空,从而体现数形结合的思想,学生通过参与活动,体会挑战成功的喜悦,并且他们的求胜心理得到了满足,沉醉在知识给他们带来的快感中完成本节课的学习,(六)课堂小结最后,凯旋归来话收获:通过本节课的学习,你收获到了什么?学生们都积极的举手回答,说出了各种各样的收获,比如:1、学会了不等式的三条基本性质2、学会了用字母来表示不等式的性质3、学生不等式与等式的区别等等;学生在回答的时候,老师加以评价和表扬并展示主要内容;这里教师要再次强调,特别注意性质3,两边同乘(或除以)一个负数时,不等号的方向要改变,数学思想的方法是数学的灵魂,这节课我们体验了三种数学思想,一是类比的思想,二是数形结合的思想,三是分类讨论的思想,

  • 北师大版初中七年级数学下册等可能性事件的概率说课稿

    (3)例题1的设计,一方面是帮助学生从生实际问题背景中逐步建立古典概型的解题模式;另一方面也可进一步理解古典概型的概念与特征,重点突破“等可能性”这个理解的难点。 采用学生分组讨论的方式完。在整个活动中学生作为活动设计者、参与者.主持者;老师起到组织和指导的作用。为了让学生进一步认识和理解随机思想,认识和理解概率的含义—概率是一种度量,是对随机事件发生可能性大小的一种度量.让学生观察图表,得出对称的规律。预计学生在构建等可能性事件模型时要花一些时间。(4)例题1的拓展设计:看学生能否能在例1的基础上利用类比的思想来建构数学模型,并得出求事件 A包含的基本事件数常用的方法有树状图法,枚举法,图表法,排列组合法等方法。适当的渗透一些数学史,学生对学习的兴趣更浓厚,可以激发学生课后去进一步的探究前辈们是如何从不考虑顺序到想到考虑顺序的

  • 北师大版初中七年级数学下册感受可能性说课稿

    6、袋子里有8个红球,m个白球,3个黑球,每个球除颜色外都相同,从中任意摸出一个球,若摸到红球的可能性最大,则m的值不可能是( )A.1 B.3 C. 5 D.10活动目的:拓宽学生的思路,对本节知识进行查缺补漏,并进一步的巩固加深,鼓励学生大胆猜测,培养学生勤于动脑、勇于探究的精神. 注意事项:对于第4题与第5题可适当的说出事件发生的可能性的大小,即概率的大小,为今后学习概率做铺垫;对于第6题可根据回答情况讲解.七、学习小结:师生共同回顾新知探究的整个过程,互相交流总结本节的知识点:(1)理解确定事件与不确定事件;(2)知道不确定事件发生的可能性有大有小;(3)合理运用所学知识分析解决相关问题.目的:锻炼学生的口头表达能力,体会学习的成果,感受成功的喜悦,增强学好数学的信心.(学生畅所欲言,教师给予鼓励)

上一页123...474849505152535455565758下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!