方法三:一个同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。通过探究,得到: 的四边形是菱形。证明上述结论:三、例题巩固课本6页例2 四、课堂检测1、下列判别错误的是( )A.对角线互相垂直,平分的四边形是菱形. B、对角线互相垂直的平行四边形是菱形C.有一条对角线平分一组对角的四边形是菱形. D.邻边相等的平行四边形是菱形.2、下列条件中,可以判定一个四边形是菱形的是( )A.两条对角线相等 B.两条对角线互相垂直C.两条对角线相等且垂直 D.两条对角线互相垂直平分3、要判断一个四边形是菱形,可以首先判断它是一个平行四边形,然后再判定这个四边形的一组__________或两条对角线__________.4、已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F求证:四边形AFCE是菱形
(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.
新建成的红星中学,首次招收七年级新生12个班共500人,学校准备修建一个自行车车棚.请问需要修建多大面积的自行车车棚?请你设计一个调查方案解决这个问题.解析:决定自行车车棚面积的因素有两个,即自行车的数量与每辆自行车的占地面积.因此收集数据的重点应围绕这两个因素进行.解:调查方案如下:(1)对全体新生的到校方式进行问卷调查.调查问卷如下:你到校的方式是骑自行车吗?A.经常是 B.不经常是C.很少是 D.从不是(2)根据调查问卷结果分类统计骑自行车的人数;(3)实际测量或估计存放1辆自行车的大约占地面积;(4)根据学校的建设规划、财力等因素确定自行车车棚的面积.方法总结:确定调查方案时必须明确两个问题:(1)需要收集哪些数据?(2)采用什么方式进行调查可以获得这些数据?探究点三:从图表中获取信息小冰就公众对在餐厅吸烟的态度进行了调查,并将调查结果制作成如图所示的统计图,请根据图中的信息回答下列问题:
一、教材1、新教材对高中语文阅读教学的要求高中语文新大纲中明确规定,高中语文教学要让学生“掌握语文学习的基本方法,养成自学语文的习惯”,“为继续学习和终身发展打好基础”,提出了“以阅读教学为龙头带动整个语文教育是一个标本兼治的通途”,以多种渠道培养良好的阅读习惯,以阅读带动听说写能力的全面提高。2、教材分析这篇文章是从美国著名的心理学家、社会学家弗罗姆《爱的艺术》中节选出来的,《爱的艺术》这本书阐释了爱并不是一种与人的成熟程度无关的感情,而是一个能力的问题,是一门通过训练自己的纪律、集中和耐心学到手的一门艺术。在这篇文章中,他从儿童成长的过程的角度阐述了父母之爱与孩童情感与心智成熟的关系,从心理学的角度阐述了爱作为一种改变社会的力量的心理基础。全文10个小节,阐述了一个婴儿成长为一个“成熟的人”其心理结构逐步变化的过程,并在最后指出,真正成熟的人应该能够综合母爱与父爱,唯其如此,才能够使自己真正成为一个健康而成熟的灵魂。
2、懂得别人的事情帮着做,体验互相关心的快乐。 活动准备: 活动过程: 1、请家长帮助孩子记住家里的地址,电话号码;请幼儿了解同住大楼里的人的姓名、职业等等 2、、教师引导幼儿介绍自己住的大楼或小区,引起活动的兴趣 (1) 教师:小朋友知道自己住在哪里吗?地址是哪里呢?大楼里住了哪些邻居呢?他们是干什么的呢?你们喜欢他们吗?为什么? (2) 教师请幼儿分组讨论互相讲讲自己的邻居。 2、教师为幼儿讲《你帮我,我帮你》的故事,引导幼儿懂的一些交往的礼仪 (1) 教师有表情地讲故事,用提问的方式引导幼儿思考:小草为什么会长得高、长得大,它得到了谁的帮助?小草它是怎么想的?我们应该学习它什么?
2、通过讨论及知识竞赛的形式、知道如何做一名将卫生的孩子。 3、知道讲卫生可以给自己和他人带来愉快的情绪、同时也会受到大家的欢迎的。 活动准备: 1、有关个人卫生和环境卫生的知识竞赛题、 2、教师演唱歌曲《猪小弟》 3、五角星贴花若干。 活动过程: 一、教师讲述故事,引出主题 今天老师带来了一个故事《小猪变干净》 师讲述故事后提问:猪小弟为什么找不到朋友玩游戏?为什么它身上脏,大家就不愿意和它玩呢?最后,它为什么能找到朋友玩?
1、画童话活动给予幼儿精神成长。 童话它以其极强的游戏精神抓住了爱好幻想的幼儿的心灵。它为幼儿营造了一方属于自己的精神乐土,把它们带入一个个超越时空的神奇境界,使幼儿强烈的好奇心和求知欲得到满足,并且唤起了天性中的良知与美德。而画童话的活动,把童话对于幼儿成长的意义作了进一步的深化,孩子们在理解童话、体会童话、感受童话的基础上画出自己的独特体验、独特想象,让幼儿用画笔在童话的世界中自由想象、自由驰骋,达到精神的自由和身心的愉悦,促进幼儿的精神成长。 2、童话《海的女儿》适合幼儿用画笔来描绘。 《海的女儿》是安徒生的著名童话,我们认为历经文化积淀的著名童话有着自身独特的文化和审美魄力,童话内容本身就对幼儿有着极大的感染力,同时我们认为具有以下特点的童话适合让幼儿用绘画的方式表现自己的想象和感受。一是情节能激发幼儿极大的艺术幻想的,让幼儿创造出更奇幻的情节的。二是形象具有拟人性和奇幻性,能使幼儿展开对形象的奇幻想象并将自己的情感和感受融入形象中的。三是具有单纯明快的叙事方式。便于幼儿顺着线性思路展开更丰富的想象,在童话中融进更多的自己。《海的女儿》便是这样的童话。
同时目标4.认识火能够发光、发热的特征。5.知道火在人们日常生活、工业、医疗、军事等方面的用处,初步了解火的起源。6.认识火灾的危害,了解一些常见的产生火灾的原因,知道正确的用火方法以及火灾中的自救办法。审美视点对火的喜爱感、对火灾的痛惜感。知识点火的用处,防火常识。
活动准备: 多媒体课件 活动过程: 一. 播放几种急救车的警报声,请幼儿分辨,并说出这些急救车是干什么用的。 师:小朋友们好!今天,老师想请大家听几种声音,说一说它们是什么东西发出的声音。 救护车是干什么用的?警车是干什么用的?消防车是干什么用的? 听说是一个小朋友的家里发生火灾了,你们猜一猜,这位小朋友的家里是怎么起火的。
方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.三、板书设计1.三角形按边分类:有两边相等的三角形叫做等腰三角形,三边都相等的三角形是等边三角形,三边互不相等的三角形是不等边三角形.2.三角形中三边之间的关系:三角形任意两边之和大于第三边,三角形任意两边之差小于第三边.本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系”.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既增加了学习兴趣,又增强了学生的动手能力
读完故事每个人不禁要问:狐狸妈妈为什么要带着孩子离开自己的家园呢?是谁使狐狸妈妈冒着这么大的风险去营救孩子呢?如果狐狸妈妈在半途中遇险,或者红毛最终没能回到妈妈的身边该是怎样的命运呢?从中对人与自然如何和谐相处又会引发更多的思考,这似乎已经超出了《我爱我家》的话题,进入了另一个主题。 在选与不选的犹豫中,我对主题的开展重新开始思考,感到世界万物都有着千丝万缕的的联系,任何主题都会与其他主题关联,开展主题的本意,就是让孩子的学习与他们的实际生活体验相联系,而不是封闭在特定的环境里,寻找主题关联的线索,会使我们的教与学更为丰满,视野更开阔,儿童发展和生成新主题的空间也会更大。 活动目标:1、理解狐狸妈妈为了孩子表现的勇敢和机智,进一步萌发爱妈妈的情感。2、积极参与讨论,愿意表达自己的想法。活动准备:1、放大的图画书多媒体课件。2、有树林背景的包装纸。3、纸印狐狸妈妈和她的孩子、红色橙色的炫彩棒、宝贴。4、幼儿调查过妈妈保护自己的小故事。
1.知道森林防火的重要性,要爱护森林。 2.学习掌握森林防火知识。 3.使学生掌握防火安全知识,增强学生的防火安全防范意识;教给学生一些自护自救的方法,学会冷静地处理各种火灾紧急情况;学会搜集相关资料,培养队员关心社会的积极性;促使儿童青少年的健康成长。
教学过程:一、课程导入1、在我国云南丽江地区居住者20余万古老的纳西族人民,他们有自己独特的语言,文字,有悠久的文化传统。《母女夜话》选自《纳西一奇》的第三乐章,是一首舒缓柔美的曲子。2、播放《母女夜话》。3、学生回答老师提问的相关问题。4、你还知道一些有关《母女夜话》的知识吗?如果知道不多,现在有什么办法去了解?(启发学生利用互联网资源搜索相关资料)。二、拓展学习1、学生分组讨论利用互联网资源搜索相关资料的网址及要搜索的关键词语。2、分组选派代表进行网上搜索。3、每组选派代表展示自己搜索到的内容,向其他同学介绍《母女夜话》有关知识。4、师总结搜索情况。5、再次播放音乐让同学有更深的印象。6、师向学生推荐优秀音乐欣赏网址。
教学目标:1.会画直棱柱(仅限于直三棱柱和直四棱柱)的三种视图,体会这几种几何体与其视图之间的相互转化。2. 会根据三视图描述原几何体。教学重点:掌握直棱柱的三视图的画法。能根据三视图描述原几何体。教学难点:几何体与视图之间的相互转化。培养空间想像观念。课型:新授课教学方法:观察实践法一、实物观察、空间想像观察:请同学们拿出事先准备好的直三棱柱、直四棱柱,根据你所摆放的位置经过 想像,再抽象出这两个直棱柱的主视图,左视图和俯视图。绘制:请你将抽象出来的三种视图画出来,并与同伴交流。比较:小亮画出了其中一个几何体的主视图、左视图和俯视图,你认为他画的对不对?谈谈你的看法。拓展:当你手中的两个直棱柱摆放的角度变化时,它们的三种视图是否会随之改变?试一试。
教学目标:1.能利用三角函数概念推导出特殊角的三角函数值.2.在探索特殊角的三角函数值的过程中体会数形结合思想.教学重点:特殊角30°、60°、45°的三角函数值.教学难点:灵活应用特殊角的三角函数值进行计算.☆ 预习导航 ☆一、链接:1.如图,用小写字母表示下列三角函数:sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三边长有什么特殊的数量关系?如果∠A=45°,那么三边长有什么特殊的数量关系?二、导读:仔细阅读课本内容后完成下面填空:
1.经历从不同方向观察物体的活动过程,发展空间观念.2.在观察的过程中,初步体会从不同方向观察同一物体可能看到不同的形状.3.能识别从三个方向看到的简单物体的形状,会画立方体及简单组合体从三个方向看到的形状,并能根据看到的形状描述基本几何体或实物原型.一、情境导入观察图中不同方向拍摄的庐山美景.你能从苏东坡《题西林壁》诗句:“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”体验出其中的意境吗?你能挖掘出其中蕴含的数学道理吗?让我们一起探索新知吧!二、合作探究探究点一:从不同的方向看物体如图所示的几何体是由一些小正方体组合而成的,从上面看到的平面图形是()解析:这个几何体从上面看,共有2行,第一行能看到3个小正方形,第二行能看到2个小正方形.故选D.
证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则∠BDC是△CDE的一个外角.∴∠BDC>∠DEC.(三角形的一个外角大于任何一个和它不相邻的内角)∵∠DEC是△ABE的一个外角(已作)∴∠DEC>∠A(三角形的一个外角大于任何一个和它不相邻的内角)∴∠BDC>∠A(不等式的性质)(2)延长BD交AC于E,则∠BDC是△DCE的一个外角.∴∠BDC=∠C+∠DEC(三角形的一个外角等于和它不相邻的两个内角的和)∵∠DEC是△ABE的一个外角∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∴∠BDC=∠B+∠C+∠BAC(等量代换)活动目的:让学生接触各种类型的几何证明题,提高逻辑推理能力,培养学生的证明思路,特别是不等关系的证明题,因为学生接触较少,因此更需要加强练习.注意事项:学生对于几何图形中的不等关系的证明比较陌生,因此有必要在证明第2小题中,要引导学生找到一个过渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等关系的传递性得出∠1>∠2。
方法总结:本题结合三角形内角和定理考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况.如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.三、板书设计1.等腰三角形的判定定理:有两个角相等的三角形是等腰三角形(等角对等边).2.反证法(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.解决几何证明题时,应结合图形,联想我们已学过的定义、公理、定理等知识,寻找结论成立所需要的条件.要特别注意的是,不要遗漏题目中的已知条件.解题时学会分析,可以采用执果索因(从结论出发,探寻结论成立所需的条件)的方法.
故最少由9个小立方体搭成,最多由11个小立方体搭成;(3)左视图如右图所示.方法点拨:这类问题一般是给出一个由相同的小正方体搭成的立体图形的两种视图,要求想象出这个几何体可能的形状.解答时可以先由三种视图描述出对应的该物体,再由此得出组成该物体的部分个体的个数.三、板书设计视图概念:用正投影的方法绘制的物体在投影 面上的图形三视图的组成主视图:从正面得到的视图左视图:从左面得到的视图俯视图:从上面得到的视图三视图的画法:长对正,高平齐,宽相等由三视图推断原几何体的形状通过观察、操作、猜想、讨论、合作等活动,使学生体会到三视图中位置及各部分之间大小的对应关系.通过具体活动,积累学生的观察、想象物体投影的经验,发展学生的动手实践能力、数学思考能力和空间观念.