解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.
[教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.
此外,以研训项目包和名师工作室为平台,开展教师学科交流研讨活动、读书分享、听专家讲座等活动。这样,有效地促进了教师专业素养的提高。总之,我们通过丰富多彩的教学研究活动,积极探索行之有效的新课程实施模式,优化我校的课堂教学,促进教育教学质量的巩固与提高。三、取得的成绩我校建校4个月以来,教师在区级教育主管部门组织开展的论文评选中,获奖达9篇,在区级教育主管部门组织的教坛新星评选活动中,我校2名教师获得此项荣誉。四、存在问题我校积极开展校本培训活动,但也存在一些不足,有待改进,具体表现在:二级培训的质量有待提高;教学研究成果需继续加强;校本培训课程开发要有深度。五、今后工作通过本学期的教师培训,促进了教师专业成长。针对以上存在的不足,我校将采取措施,完善工作,为建设业务精良的教师队伍而不懈努力。
一、教育教学方面本学年年初,我就给自己制定了继续把讲台站好、努力把讲台站活的大体目标,进而从备课、上课、课后反思三个环节着手对自己的教学工作进行改进。由于所教学生学习基础、学习习惯差别较大,这三个环节中我都努力做到因材施教,让成绩处于不同层面的学生都能有所进步。作为语文教师,我始终注重培养学生的写作能力,用文如其人的理念来感染和塑造他们的气质及人格。通过努力,我所教的班级语文成绩在年级名列前茅,辅导学生多次在报刊杂志上发表文章,并在多次作文比赛中获奖。
一、认识说课的实质说课是指教师以现代教育理念为指导,在精心备课的基础上,面对同行或教学研究人员,采用口头语言或相关辅助手段,阐述某学科课程或某具体课程的教学设计及其依据的教学研究过程(李崇爱,孟应周,2011)。简单而言,说课就是教师对“教什么”、“怎么教”、“为什么这么教”等问题进行阐述。这样做的目的,一方面可以展现一个教师的教育理论修养、教学组织能力和口头表达能力,另一方面可以帮助教师优化教学设计,反思教学行为,分享教学经验。
活动准备:各种颜色、形状的卡通杯若干、彩色笔、蜡笔、图画纸若干张 活动过程:一、谈话法激趣。小朋友,天气炎热的时候,我们会口渴,口渴的时候会想要喝水。用什么装开水喝,用自己的杯子喝水是最卫生的。没有杯子的孩子也没有关系,通过这堂课的努力,我们会获得自己最喜欢的杯子的。二、展示若干漂亮的卡通杯。老师拿一只杯子让幼儿仔细的观察后,提问: 老师:孩子们,这是只——漂亮的卡通杯。想一想,说一说,杯子可以来做什么? 孩子会想到可以装水喝水,可以做屋子的点缀,可以用杯子装水漱口,还可以用保温的杯子装鸡汤等。杯子有这么多用处,你一定很想从这里面挑一只杯子吧。请小朋友们有序的来挑一只自己喜欢的杯子。看一看,你挑选的杯子的颜色、样式,摸一摸杯子,有什么样的触觉,想一想,我选的杯子与其他杯子有什么不同,和其他小朋友交流交流,说一说,我选择的杯子怎么认。
活动过程: (一)以变魔术的游戏形式导入,激发幼儿兴趣。 1、老师打扮成魔术师的样子对孩子们说:“我是神奇的魔术师,我能变出很多很多的东西,看我变变变”。(边说边转一圈,从袖子里拿出三角形)。 提问:(1)我变出了什么? (2)三角形有几条边?(伸出手点数) (3)你见过什么东西是三角形形状的? 2、用同样方法,从左兜里变出正方形,提问相似问题。 3、用同样方法,从右兜里变出圆形,提问相似问题。 (二)进行游戏:图形娃娃找家 1、以魔术师的身份变出图形娃娃,送给孩子们。 师:我的本领可大了,还能把你们变成图形娃娃,看我变变变(从隐蔽的地方拿出卡通图形娃娃挂饰,让幼儿辨认形状),你喜欢哪一个,就自取一个挂在脖子上,自己摸一摸,看一看你是什么形状的娃娃?
活动准备: 小厨师形象图片一张,“青菜”“鸡腿”“肉串”“爆米花”图片各一张,“炒”“炸”“烤” “爆”字卡一份(教具)、各四份(学具),布袋16个,厨师帽16只。 活动过程: 一、探讨做菜方法,建构儿歌。 (一)激趣。 T:“小朋友们看,谁来啦?”(出示小厨师图片) “你从哪儿看出他是一位小厨师?” “我们一起学学小厨师,带领幼儿边说边表演‘带上厨师帽,挂上小围裙’” “小厨师准备要做菜了,我们一起跟小厨师学做菜吧。” (二)探讨四种菜的不同做法。 1、T:“看看第一道学做什么菜?”(出示青菜图片) T:“你觉得这盘青菜怎么样?” “这样绿油油的青菜是怎么做出来的?”(幼儿自由发表意见,教师有目的引导)。 “青菜是怎么做出来的请幼儿说一说,做一做。” “原来这样绿油油的青菜是炒出来的呀,我们一起来炒青菜吧。”(教师带领幼儿边做炒的动作边说‘炒青菜,炒青菜,炒炒炒’)根据幼儿实际情况,练习几遍。 T:“青菜是炒出来的呀?”(教师出示字卡‘炒’) 幼儿认读:“炒”,把字卡贴到青菜的旁边,“炒青菜”、“炒青菜炒青菜,炒炒炒” 2、T:“我们来看第二道菜是什么?(鸡腿)” T:“你们吃过这样的鸡腿吗?吃起来有什么感觉?”
2、 能表达自己的发现及疑问,和同伴互相合作玩游戏 3、 培养幼儿对自然科学的兴趣活动准备: 1、 红、黄、蓝、绿的玻璃纸、各色布、皱纹纸若干,大小能覆盖手电筒口 2、 手电筒幼儿人手一个 3、 一段节奏强烈的音乐活动过程: 一、引发幼儿对活动的兴趣 师:“小朋友,今天我要和你们玩一个很好玩的你们从没玩过的游戏,好吗?” 教师打开手电筒,将光照射到活动室墙面上, 师:“小朋友,你们看到了什么?” 幼儿自由讲述 师:“现在请你们猜一猜,如果在手电筒前面蒙上一块红布,会怎么样?”幼儿自由讲述
2、发展幼儿的观察力和绘画表现能力。3、加深幼儿对老师的热爱之情。二、活动准备:1、请配班老师配合上课。2、带花边的纸或一次性纸餐盘若干、彩笔。三、活动过程:1、引出教师节,导入活动,引起幼儿兴趣。教师:小朋友,我们班上有几位老师?你们怎样称呼她们?明天就是教师节了,今天我们给老师画张像,画好后,送给老师好不好?
活动目标:l、通过游戏活动,发展幼儿走跑交替、跳跃及平衡的能力,体验游戏带来的乐趣。2、通过游戏活动,发展幼儿四肢的协调性、柔韧性和动作的灵敏性,提高幼儿听信号做相应动作的能力。3、培养幼儿的扩散性思维和协作能力。 活动准备:l、红、黄、蓝、绿色的塑料圈每人四个。2、红、黄、蓝、绿色的小旗各一面。3、大鼓一面,柱子两根。4、录音机、磁带。5、场地布置如图。
一.学习目的和要求:1.对本章内容的认识更全面、更系统化。2.进一步加深对本章基础知识的理解以及基本技能的掌握,并能灵活运用。二.学习重点和难点:重点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算的灵活运用。难点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算的灵活运用与提高。三.学习方法:归纳,总结 交流、练习 探究 相结合 四.教学目标和教学目标解析:教学目标1 同类项 同类项:所含字母相同,并且相同字母的指数也分别相等的项,另外所有的常数项都是同类项。例如: 与 是同类项; 与 是同类项。注意:同类项与系数大小无关,与字母的排列顺序无关。教学目标2 合并同类项法则 合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数保持不变,如: 。
. 一个数的倒数等于它本身的数是()A.1 B. C.±1 D.04. 下列判断错误的是()A.任何数的绝对值一定是非负数; B.一个负数的绝对值一定是正数;C.一个正数的绝对值一定是正数; D.一个数不是正数就是负数;5. 有理数a、b、c在数轴上的位置如图所示则下列结论正确的是()A.a>b>0>c B.b>0>a>cC.b<a<0< D.a<b<c<06.两个有理数的和是正数,积是负数,则这两个有理数( )A.都是正数; B.都是负数; C.一正一负,且正数的绝对值较大; D.一正一负,且负数的绝对值较大。7.若│a│=8,│b│=5,且a + b>0,那么a-b的值是( )A.3或13 B.13或-13 C.3或-3 D.-3或-138. 大于-1999而小于2000的所有整数的和是()A.-1999 B.-1998 C.1999 D.20009. 当n为正整数时, 的值是()
16.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( ).A.从甲组调12人去乙组 B.从乙组调4人去甲组C.从乙组调12人去甲组 D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?( )A.3个 B.4个 C.5个 D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:2(x-3)+3(2x-1)=5(x+3)20.解方程: 21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.
本节课采取了开门见山的切入方法,旨在激发学生的求知欲望,在学生已有的认识基础上,让学生经历了“观察、思考、探究、实践”的过程。在总结出同类项定义后,没有按通常的做法,即直接分析定义中的两个条件,强调两个条件缺一不可,而是通过一组练习,让学生在具体问题中体会定义中的两个条件缺一不可,使他们先有较强烈的感性认识,而后,分析定义中的两个条件,这样会给学生留下更深刻、更牢固的印象.这样的设计既符合学生的年龄特征,也符合“从感性到理性、从具体到抽象”的认知规律。数学不应只强调抽象、严谨,这样不但会更显数学教学的枯燥,而且会使学生在学习中出现畏难情绪,甚至丧失学习数学的兴趣。通过本节课的教学,我认为还存在一些不足,一部分学生的学习能力还有待于进一步培养。如:学习同类项的概念时,当把字母顺序进行改变后,部分学生就认为不是同类项。
1.理解角的概念,掌握角的表示方法.2.理解平角、周角的概念,掌握角的常用度量单位:度、分、秒,及它们之间的换算关系,并会进行简单的换算.一、情境导入钟表是我们生活中常见的物品,同学们,你能说出图中每个钟表时针与分针所成的角度吗?学完了下面的内容,就会知道答案.二、合作探究探究点一:角的概念及其表示方法【类型一】 对角的概念的考查下列关于角的说法中正确的有()①角是由两条射线组成的图形;②角的边越长,角越大;③在角一边的延长线上取一点;④角可以看作由一条射线绕着它的端点旋转而形成的图形.A.1个 B.2个 C.3个 D.4个解析:①角是由有公共端点的两条射线组成的图形,错误;②角的大小与开口大小有关,角的边是射线,没有长短之分,错误;③角的边是射线,不能延长,错误;④角可以看作由一条射线绕着它的端点旋转而形成的图形,说法正确.所以只有④正确.故选A.
解析:水是生命之源,节约水资源是我们每个居民都应有的意识.题中给出假如每人浪费一点水,当人数增多时,将是一个非常惊人的数字,100万人每天浪费的水资源为1000000×0.32=320000(升).所以320000=3.2×105.故选B.方法总结:从实际问题入手让学生体会科学记数法的实际应用.题中没有直接给出数据,应先计算,再表示.探究点二:将用科学记数法表示的数转换为原数已知下列用科学记数法表示的数,写出原来的数:(1)2.01×104;(2)6.070×105.解析:(1)将2.01的小数点向右移动4位即可;(2)将6.070的小数点向右移动5位即可.解:(1)2.01×104=20100;(2)6.070×105=607000.方法总结:将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.三、板书设计借助身边熟悉的事物进一步体会大数,积累数学活动经验,发展数感、空间感,培养学生自主学习的能力.
光年是表示较大距离的一个单位, 而纳米(nanometer)则是表示微小距离的单位。1纳米= 米,即1米= 纳米。我们通常使用的尺上的一小格是一毫米(mm),1毫米= 米。可见,1毫米= 纳米,容易算出,1纳米相当于1毫米的一百万分之一。可想而知,1纳米是多么的小。超微粒子的大小一般在1~100 纳米范围内,故又称纳米粒子。纳米粒子的尺寸小,表面积大,具有高度的活性。因此,利用纳米粒子可制备活性极高的催化剂,在火箭固体燃料中掺入铝的纳米微粒,可提高燃烧效率若干倍。利用铁磁纳米材料具有很高矫顽力的特点,可制成磁性信用卡、磁性钥匙,以及高性能录像带等 。利用纳米材料等离子共振频率的可调性可制成隐形飞机的涂料。纳米材料的表面积大,对外界环境(物理的和化学的)十分敏感,在制造传感器方面是有前途的材料,目前已开发出测量温度、热辐射和检测各种特定气体的传感器。在生物和医学中也有重要应用。纳米材料科学是20世纪80年代末诞生并正在崛起的科技新领域,它将成为跨世纪的科技热点之一。
根据题意,得34%x-18%x=160,解得x=1000.所以48%x=48%×1000=480(公顷),18%x=18%×1000=180(公顷),34%x=34%×1000=340(公顷).答:玉米种了340公顷,高粱种了180公顷,水稻种了480公顷.方法总结:从扇形统计图中获取正确的信息是解题的关键.语文老师对班上学生的课外阅读情况做了调查,并请数学老师制作了如图所示的统计图.(1)哪种书籍最受欢迎?(2)哪两种书籍受欢迎程度差不多?(3)图中扇形分别表示什么?(4)图中的各个百分比如何得到?所有的百分比之和是多少?解:(1)科幻书籍最受欢迎,可从扇形的大小或图中百分比的大小得出.(2)科普书籍和武侠书籍受欢迎程度差不多,可从图中扇形大小或图中所标百分比的大小得出.(3)图中扇形分别代表了最喜欢某种书籍的人数占全班人数的百分比.(4)用最喜欢某种书籍的人数比全班的总人数即可得各个百分比,所有的百分比之和为1.方法总结:由扇形统计图获取信息时,一定要明确各个项目和它们所占圆面的百分比.
议一议数轴上的两个点,右边点表示的数与左边点表示的数有怎样的大小关系?数轴上表示的数,▁▁▁边的总比▁▁▁边的大;正数▁▁▁0,负数▁▁▁0,正数▁▁▁负数。练习:比较大小:-3▁5; 0 ▁-4 ;-3 ▁-2.5。3、合作交流(1) 什么是数轴?怎样画数轴。(2) 有理数与数轴上的点之间存在怎样的关系?(3) 什么是相反数?怎样求一个数的相反数?(4) 如何利用数轴比较有理数的大小?5、随堂练习:(1)下列说法正确的是( ) A、 数轴上的点只能表示有理数B、 一个数只能用数轴上的一个点表示C、 在1和3之间只有2D、 在数轴上离原点2个单位长度的点表示的数是2 (2)语句:①-5是相反数?②-5与+3互为相反数③-5是5的相反数④-5和5互为相反数⑤0的相反数是0⑥-0=0。上述说法中正确的是( )