方法总结:题中未给出图形,作高构造直角三角形时,易漏掉钝角三角形的情况.如在本例题中,易只考虑高AD在△ABC内的情形,忽视高AD在△ABC外的情形.探究点二:利用勾股定理求面积如图,以Rt△ABC的三边长为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中△ABE的面积为________,阴影部分的面积为________.解析:因为AE=BE,所以S△ABE=12AE·BE=12AE2.又因为AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因为AC2+BC2=AB2,所以阴影部分的面积为14AB2+14AB2=12AB2=12×32=92.故填94、92.方法总结:求解与直角三角形三边有关的图形面积时,要结合图形想办法把图形的面积与直角三角形三边的平方联系起来,再利用勾股定理找到图形面积之间的等量关系.
探究点二:三角形内角和定理的推论2如图,P是△ABC内的一点,求证:∠BPC>∠A.解析:由题意无法直接得出∠BPC>∠A,延长BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得证.证明:延长BP交AC于D,∵∠BPC是△ABC的外角(外角定义),∴∠BPC>∠PDC(三角形的一个外角大于任何一个和它不相邻的内角).同理可证:∠PDC>∠A,∴∠BPC>∠A.方法总结:利用推论2证明角的大小时,两个角应是同一个三角形的内角和外角.若不是,就需借助中间量转化求证.三、板书设计三角形的外角外角:三角形的一边与另一边的延长线所组成的 角,叫做三角形的外角推论1:三角形的一个外角等于和它不相邻的两 个内角的和推论2:三角形的一个外角大于任何一个和它不 相邻的内角利用已经学过的知识来推导出新的定理以及运用新的定理解决相关问题,进一步熟悉和掌握证明的步骤、格式、方法、技巧.进一步培养学生的逻辑思维能力和推理能力,特别是培养有条理的想象和探索能力,从而做到强化基础,激发学习兴趣.
探究点二:勾股定理的简单运用如图,高速公路的同侧有A,B两个村庄,它们到高速公路所在直线MN的距离分别为AA1=2km,BB1=4km,A1B1=8km.现要在高速公路上A1、B1之间设一个出口P,使A,B两个村庄到P的距离之和最短,求这个最短距离和.解析:运用“两点之间线段最短”先确定出P点在A1B1上的位置,再利用勾股定理求出AP+BP的长.解:作点B关于MN的对称点B′,连接AB′,交A1B1于P点,连BP.则AP+BP=AP+PB′=AB′,易知P点即为到点A,B距离之和最短的点.过点A作AE⊥BB′于点E,则AE=A1B1=8km,B′E=AA1+BB1=2+4=6(km).由勾股定理,得B′A2=AE2+B′E2=82+62,∴AB′=10(km).即AP+BP=AB′=10km,故出口P到A,B两村庄的最短距离和是10km.方法总结:解这类题的关键在于运用几何知识正确找到符合条件的P点的位置,会构造Rt△AB′E.三、板书设计勾股定理验证拼图法面积法简单应用通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,学会勾股定理的应用并逐步培养学生应用数学解决实际问题的能力,为后面的学习打下基础.
方法总结:利用三角形三边的数量关系来判定直角三角形,从而推出两线的垂直关系.探究点二:勾股数下列几组数中是勾股数的是________(填序号).①32,42,52;②9,40,41;③13,14,15;④0.9,1.2,1.5.解析:第①组不符合勾股数的定义,不是勾股数;第③④组不是正整数,不是勾股数;只有第②组的9,40,41是勾股数.故填②.方法总结:判断勾股数的方法:必须满足两个条件:一要符合等式a2+b2=c2;二要都是正整数.三、板书设计勾股定理的逆定理: 如果一个三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.勾股数:满足a2+b2=c2的三个正整数,称为勾股数.经历一般规律的探索过程,发展学生的抽象思维能力、归纳能力.体验生活中数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.
判断下面抽样调查选取样本的方法是否合适:(1)检查某啤酒厂即将出厂的啤酒质量情况,先随机抽取若干箱(捆),再在抽取的每箱(捆)中,随机抽取1~2瓶检查;(2)通过网上问卷调查方式,了解百姓对央视春节晚会的评价;(3)调查某市中小学生学习负担的状况,在该市每所小学的每个班级选取一名学生,进行问卷调查;(4)教育部为了调查中小学乱收费情况,调查了某市所有中小学生.解析:本题应看样本是否为简单随机样本,是否具有代表性.解:(1)合适,这是一种随机抽样的方法,样本为简单随机样本.(2)不合适,我国农村人口众多,多数农民是不上网的,所以调查的对象在总体中不具有代表性.(3)不合适,选取的样本中个体太少.(4)不合适,样本虽然足够大,但遗漏了其他城市里的这些群体,应在全国范围内分层选取样本,除了上述原因外,每班的学生全部作为样本是没有必要的.
方法总结:让利10%,即利润为原来的90%.探究点三:求原价某商场节日酬宾:全场8折.一种电器在这次酬宾活动中的利润率为10%,它的进价为2000元,那么它的原价为多少元?解析:本题中的利润为(2000×10%)元,销售价为(原价×80%)元,根据公式建立起方程即可.解:设原价为x元,根据题意,得80%x-2000=2000×10%.解得x=2750.答:它的原价为2750元.方法总结:典例关系:售价=进价+利润,售价=原价×打折数×0.1,售价=进价×(1+利润率).三、板书设计本节课从和我们的生活息息相关的利润问题入手,让学生在具体情境中感受到数学在生活实际中的应用,从而激发他们学习数学的兴趣.根据“实际售价=进价+利润”等数量关系列一元一次方程解决与打折销售有关的实际问题.审清题意,找出等量关系是解决问题的关键.另外,商品经济问题的题型很多,让学生触类旁通,达到举一反三,灵活的运用有关的公式解决实际问题,提高学生的数学能力.
解析:图中∠AOB、∠COD均与∠BOC互余,根据角的和、差关系,可求得∠AOB与∠COD的度数.通过计算发现∠AOB=∠COD,于是可以归纳∠AOB=∠COD.解:(1)∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°.∵∠BOC=30°,∴∠AOB=∠AOC-∠BOC=90°-30°=60°,∠COD=∠BOD-∠BOC=90°-30°=60°.(2)∠AOB=∠AOC-∠BOC=90°-54°=36°,∠COD=∠BOD-∠BOC=90°-54°=36°.(3)由(1)、(2)可发现:∠AOB=∠COD.(4)∵∠AOB+∠BOC=∠AOC=90°,∠BOC+∠COD=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD.∴∠AOB=∠COD.方法总结:检验数学结论具体经历的过程是:观察、度量、实验→猜想归纳→结论→推理→正确结论.三、板书设计为什么,要证明)推理的意义:数学结论必须经过严格的论证检验数学结论的常用方法实验验证举出反例推理证明经历观察、验证、归纳等过程,使学生对由这些方法得到的结论产生怀疑,以此激发学生的好奇心,从而认识证明的必要性,培养学生的推理意识,了解检验数学结论的常用方法:实验验证、举出反例、推理论证等.
1.会用计算器求平方根和立方根;(重点)2.运用计算器探究数字规律,提高推理能力.一、情境导入前面我们通过平方和立方运算求出一些特殊数的平方根和立方根,如4的平方根是±2,116的平方根是±14,0.064的立方根是0.4,-8的立方根是-2等.那么如何求3,189,-39,311的值呢?二、合作探究探究点一:利用计算器进行开方运算 用计算器求6+7的值.解:按键顺序为■6+7=SD,显示结果为:9.449489743.方法总结:当被开方数不是一个数时,输入时一定要按键.解本题时常出现的错误是:■6+7=SD,错的原因是被开方数是6,而不是6与7的和,这样在输入时,对“6+7”进行开方,使得计算的是6+7而不是6+7,从而导致错误.K探究点二:利用科学计算器比较数的大小利用计算器,比较下列各组数的大小:(1)2,35;(2)5+12,15+2.解:(1)按键顺序:■2=SD,显示结果为1.414213562.按键顺序:SHIFT■5=,显示结果为1.709975947.所以2<35.
一、教材的地位与作用 本节主要学习一元一次不等式组及其解集的概念,并要求学生会用数轴确定解集。它是一元一次不等式的后续学习,也是一种基本的数学模型,也为下节和今后解决实际生产和生活问题奠定了坚实的知识基础。另外,整个学习的过程中数轴起着不可替代的作用,处处渗透着数形结合的思想,这种数学思想会一直影响着学生今后数学的学习。二、学情分析从学生学习的心理基础和认知特点来说,学生已经学习了一元一次不等式,并能较熟练地解一元一次不等式,能将简单的实际问题抽象为数学模型,有一定的数学化归能力。但学生将两个一元一次不等式的解集在同一数轴上表示会产生一定的困惑。这个年龄段的学生,以感性认识为主,并向理性认知过渡,所以,本节课的设计是通过学生所熟悉的问题情境,让学生独立思考,合作交流,从而引导其自主学习。
(二)教材分析《分数和小数的互化》是在学生学习了分数的意义分数与除法的关系和分数的基本性质的基础上教学的。学习这部分内容是为以后学习分数和小数的混合运算打下基础。例1是教学小数化分数。教材突出“先把小数化成分母为10、100、1000……的分数再写成最简分数”这一转化过程。例2时教学6个数的大小比较,从中学习如何把分数化小数,教材按照已掌握的分数与除法的关系和分数的基本性质,提出问题引导学生想出多种方法把分数化成小数。本节课的内容,体现了数学知识的内在联系,学生通过学习这部分知识,将为今后学习分数与小数的混合运算打下良好的基础。(三)教学目标1.知识目标:是学生理解并掌握分数和小数、小数和分数互化的方法,能正确地进行分数与小数、小数与分数之间的互化。2.能力目标:培养学生的观察、归纳和概括能力。3.情感目标:体验合作学习的快乐,感受数学在生活中的应用价值,渗透“事物之间互相联系、互相转化”的辩证唯物主义思想。
(五)课后延伸,资源共享(进入本课的最后一个环节)让学生欣赏著名的蒙古族器乐曲《赛马》、《牧歌》;欣赏耳熟能详的蒙古族歌曲《吉祥三宝》、《美丽的草原我的家》等。【因为一个、两个的音乐作品并不能让孩子们完全的认识、领悟蒙古族音乐的丰富魅力及内涵。我利用课堂上的有效时间,趁热打铁,让他们从多角度体验音乐音响形式中的美,陶冶情操,启迪智慧。这样富有弹性的设计,有利于培养学生的创新思维,使音乐教学充满生机与活力。】总之,这节课的设计是融合律动、歌曲、表演、创编为一体的较为全面的综合课。以学生发展为前提,以“主体、创新”为主题,以“草原”为主线贯穿整堂课,充分利用多媒体教学,通过走进大草原、感受大草原、歌唱大草原、体验创新,激发热情、课后延伸,资源共享几个环节的教学,圆满地完成了本课的教学任务,落实了教学目标。
鼓励学生创编恰当动作边唱边舞。创设一个情境,让学生们在欢快、喜悦的情境中体会歌曲所要表达的主题。这样不仅能使学生积极展开想象,引发创作灵感,而且有效的培养学生的审美能力。另一方面,我还重视音乐文化方面去开拓,激发学生对音乐的热爱。(二)、课堂小节小小酒窝是甜蜜的,也是幸福的。在我们每个同学身边,有亲爱的爸爸、妈妈、爷爷、奶奶......有亲爱的老师同学,有这么多关心爱护你们的人,你们的成长进步是他们的骄傲。你们是多么幸福啊,老师真为你们高兴。在这里请对他们真诚的说一声“谢谢你们”!【本课教学内容的主题为“热爱童年生活,珍惜今天的幸福!”这个环节,就是促使学生关注自己身边的事物,学会去珍爱自己的生活!从而深化音乐作品所表达的内涵。】当然,以上所述只是我对本课的设想,但不管怎样,我认为一堂音乐课只要能成为学生享受音乐美的圣殿,就是我们教师应该追求的境界。
长期以来,我们的高中音乐课堂在注重学生感官体验的同时,却忽略了对学生的音乐表现能力的培养,我们一直认为活泼、律动的音乐课是小学和初中的音乐课特点,而高中音乐课堂应该是知性的,理性的。但在本课的教学过程中,学生所表现出的热情与活跃,积极与投入改变了我的看法。但还是有不足之处:1、采用集体大课教学,无法对学生个体的歌唱问题进行纠正,因此学生个体的歌唱能力提高缓慢。仍然达不到理想的要求,常常有齐唱如花,个别唱如草的感叹。2、声乐课堂作业的完成情况不佳,许多同学下课后根本没练习,连歌词都记不了,在学习的监管上要加强。3、在课堂教学中没有让学生的个唱能力得到展现,不利于学生个性特征的发挥,也不利于学生学习兴趣的进一步激发。今后在课堂上应让更多的学生起来范唱,正面的、反面的都可以,这样能帮助大家树立声乐学习的正确认识,对声音的正确概念有比较明确的判断。
教学反思:京剧是我们的“国粹”,既称“国粹”,自是国之经典,京剧博大精深,只要能够静下心来去听,静下心来去看,能够深入进去,一定能找到你喜欢的,有意思的内容,我们在课上了解京剧行当时很多学生都很感兴趣,学生对不同行当人物的装扮、亮相,一招一式都看的特别投入,有的学生还跟着表演起来,看的出学生觉得很有意思,至少能吸引他们的注意,然而在歌曲学唱中效果就一般了,由于歌曲京韵味很浓,一字多音特别多,因此,很多学生唱不准,京韵味就更难做出来了,课堂教学中,我只能以让学生多听、多模仿为主,然而很多学生不认真,自然是觉得没兴趣,因此,学唱效果一般。或许京剧流行的年代离学生们太远,平时接触的又少,因此,提倡的“京剧进课堂”的想法并不是我们一朝一夕能达到的,京剧进课堂,能否也唱进孩子们的心里?需要我们所有人重视并参与,让我们共同为京剧的美好明天而努力吧。
2、指名读喜欢的部分,师生评议。3、播放歌曲,学生跟唱,引发情感共鸣。[在引导学生走进文本,受到情感熏陶的基础上,进一步引导学生将作者字里行间流露的深情通过朗读表达出来,激发学生与作者情感上的共鸣。使学生的民族自豪感得到培养(五)、拓展延伸1、搜集有关龙的资料,创办专题读书笔记。[这个问题的设计,是在学生深读积累的基础上进行拓展延伸,为学生创造性的学习提供一个空间,从而使学生自主学习的能力得到培养,体现语文工具性与人文性的统一。] 反思:本节课围绕“质疑、解难,读书、感悟,讨论、交流”展开教学,通过听歌导入,图片展示,让学生“乐中求知”,通过自读感悟,小组合作交流,教给学生学习方法,培养学生自主学习的能力,同时教师的相机点拨,又突出了重点。将以人为本,以学生发展为本的教育思想落到了实处。
三、拓展师:浏阳河十曲九弯,碧波荡漾,你听,在浏阳河畔传来了阵阵歌声(听歌曲《浏阳河》)师:你觉得歌曲《浏阳河》与古筝曲《浏阳河》有什么异同?(请学生各抒己见,说说歌曲与乐曲的异同)师:的确,无论是歌曲还是乐曲都非常的优美动听,都表达了对浏阳河的赞美、热爱之情。四、延伸师:今天我们学了民族乐器—古筝,你知道的民族乐器还有哪些?生:二胡、葫芦丝、琵琶、扬琴、笛子、萧师:李老师这里有几段音乐,请你来辨别一下,哪一段音乐是用古筝演奏的?(辨别古筝的音色)师:今天通过《浏阳河》,咱们认识了古筝,并熟悉了古筝的音色。在以后,我们还将一一的学习另外的民族乐器。五、小结《浏阳河》的旋律六十年前传遍了大江南北,今天的它依旧流行在我们的心中,如今它更是唱响了世界,希望大家永远记住浏阳河的声音,让这旋律伴你成长。
(四)轮唱歌曲,表现黄昏。本环节设计了一个三部轮唱,主要源于三年级上册已经出现了轮唱,二部轮唱对于他们来说基本可以,如果加入三部轮唱,歌曲的意境会表现的更加淋漓尽致。(五)竖笛演奏,再现黄昏。在本环节中通过教师吹奏竖笛,学生打击乐伴奏,学生聆听竖笛演奏的《美丽的黄昏》,布置学生课后练习竖笛演奏。感受声乐、器乐表现的相同与不同之处,提高学生的音乐感受力。本节课为了让学生更好地聆听二拍子和三拍子的特点,我们精心选择了教材并自制了歌曲伴奏,通过本节课的学习,学生对四三拍有了很好的内心体验,并自然而然的在歌曲中表现出来。引导学生在参与音乐活动中,学习知识;提高技能;收获成功,体验合唱的美妙!学生在音乐中变得更加热情、开朗,自信。
一、说教材: 德国作曲家卡尔.泰克的《同伴进行曲》是进行曲中的名作。它轻快优美的旋律为全世界人所熟悉。下面让我们走进泰克的世界,感受音乐之美。这是一首用管乐器(包括铜管乐器、木管乐器及打击乐器)演奏的进行曲。乐曲为复三段体结构。 在4小节引子之后,由高音乐器奏出了刚健、有力的进行曲主题主题旋律的后半部分出现了多次大跳。音乐显得更为明朗、活泼:当主题反复一遍时,一个柔美如歌的对位旋律与刚刚节奏短促的主题旋律相伴进行,仿佛两个性格迥异的好友携手同行:在主题又作了一次变化重复后,乐曲进入中部,中低音乐器奏出平静温和的旋律,音调上下回旋,好像是对昔日好友的深情怀念。第三部分是第一部分的变化再现。随着第一部分的主题再次出现,乐曲在热情洋溢的气氛中结束。
本课是人教版音乐课程标准实验教科书第五册第三课的内容。歌曲《哦!苏珊娜》是美国作曲家福斯特的作品中深受大众喜爱并且流传最广的一首。它表现了对朋友真诚的情谊和对生活中美好事物的向往。全曲有八个乐句,其中四个乐句是完全相同的。另两个乐句和这四个乐句仅在句尾的落音上稍作变化,也就是说整个曲调六个乐句都是重复第一乐句轻快、流畅的音乐主题。歌曲中间部分有一个对比乐句,这个乐句前半部分由两个八分音符和一个切分节奏的运用,使得旋律在感情色彩上产生了变化,从而把歌曲推向高潮,深化了“朋友”这一主题情感。后半乐句又回到了主题音调上,使单一的音乐主题在不断反复之中又有起伏,仿佛在倾诉对远方朋友的思念之情。本课的教学内容:1、学唱歌曲《哦!苏珊娜》2、学跳邀请舞
[设计意图]:利用交互式的电脑课件演示,创设教学情境,使学生通过了解蒙古族的风土人情开拓文化视野,从而产生对蒙古族的热爱之情,并培养学生欣赏音乐的兴趣。(三)新课导入有一首曲子淋漓尽致的刻画了蒙古族人民在赛马场上的情景,那就是由我国作曲家黄海怀创作的二胡独奏曲《赛马》。介绍二胡:(教学重点)是我国的民族传统乐器,它是通过琴弓与两根琴弦磨擦产生振动传到鼓面上发出的声音。二胡可以演奏各种情绪的音乐,不但能演奏优美婉转的乐曲,还能表现热烈欢快的旋律。更能模仿一些特殊的声音。二胡演奏法其中的三种:连弓、连顿弓、拨弦。二胡由琴筒、琴皮、琴杆、琴头、琴轴、千斤、琴马、弓子和琴弦等部分组成,另外还有松香等附属物。