四、说教法、学法我在教学中主要采用的教学方法是先学后教中的“两学两教”。辅之以多媒体教学手段(主要通过微课视频的观看学习)。本课学生的学习方法主要有:自主发现法、合作交流法、自学尝试法等。1.学生在自主探究解答例题,求两种品牌罐头的合格率时,主要采用自学尝试法,根据知识的迁移,学生能够正确求出产品合格率。2.在总结小数、分数化成百分数的方法时,学生主要采用自主发现,合作交流的方法。首先让学生观察例题板书,想一想怎样把小数、分数化成百分数,采用了“兵教兵”的方法,达到了人人参与的目的。当然,由于学生所处的文化环境,家庭背景和自身思维方式的不同,不同的学生所采用的方法也不尽相同,作为教师要尊重学生的选择,允许学生用自己喜欢的方式学习数学。五、说教学过程
④联系生活实际解决身边的问题,让同学初步感受数学与日常生活的密切联系,体验数学的应用,促进学生的发展。接下来,我再具体谈一谈这堂课的教学过程。3、说教学过程第一环节:创设情境,激qing导入。同学们你们看屏幕上的是什么?(出示图片)那么自行车车轮是什么形状的?为什么车轮要设计成圆形?这里面有什么奥妙呢?学了今天的内容大家就会明白的。这节课我们就走进圆的世界去探寻其中的奥妙。板书课题:圆的认识设计意图:通过生活中实际例子引入课题,一方面引起学生的学习兴趣,另一方面为学习新知识做了铺垫,从思想上吸引了学生主动参与学习的活动。这一环节的设计,主要是想体现数学就在我们的身边,从而激发学生学习的兴趣及学习的积极性。
本课的教学重点是:能正确计算7的加减法。教学难点是:运用所学知识解决生活中简单的加减法问题。根据学生的实际情况《背土豆》共安排两课时,本节课为第一课时。二、说教法与学法学生的经验和活动是他们学习数学的基础。抓住学生的年龄特点和心理特点,从学生感兴趣的小故事导入新课,在观察情景图的过程中,既培养学生的观察能力和语言表达能力,又激发了学生学习数学的兴趣。同时充分利用了学具和多媒体教学手段,调动学生多种感官参与学习。整节课以故事为主线,把教学内容串了起来,尽可能地激发学生的求知欲望。教学过程紧扣教材,根据学生的实际适时引导。有效的学习就是激励学生动手实践、自主探索与合作交流。本课教学中,我尽可能地引导学生自主提问,自己解决问题,让学生在探索、操作、交流获取新知。
一、说教材:“跷跷板”一课是一年级上册第二单元的内容,是在学生学习了比较多少和高矮、长短的基础上进行的体验活动。内容选取学生身边的、常见的、较感兴趣的事物,符合学生的年龄特点与生活经验。本节课的教学让学生通过实践活动,逐步加深对轻重的体验与理解,初步体会借助工具确定轻重的必要性。根据一年级学生的年龄特点和教材的设计意图,教学中应注意创设有趣的情境,使学生产生学习比较轻重的兴趣,让学生在具体的操作活动中独立思考、合作交流,发现比较的方法,使他们获得良好的情感体验,树立学好数学的信心,培养创新意识。二、说教学目标:1、通过比较的活动,让学生感受数学与生活的联系,培养学生仔细观察、认真思考的良好习惯。2、经历比较活动,增强轻重的生活体验。3、通过说一说、掂一掂、称一称的活动,使学生逐步加深对轻重的体验与理解,学会一些比较的方法,体会轻重的相对性。4、通过简单的推理活动,培养学生初步的推理能力。
二、说目标:(根据学生已有的实际情况和培养目标)1、使学生在已有经验的基础上自主探索得出计算8加几的各种方法,体现算法多样化;使学生进一步理解“凑十法”并能正确熟练地口算8加几;2、培养学生的动手操作能力,初步的观察、比较能力;3、培养学生合作学习以及数学应用的意识;能从日常生活和现实情境中发现并提出简单的数学问题,并能应用已有的知识、经验和方法解决问题,在学习数学的过程中,学会与人合作,获得良好的情感体验。三、说重点:“8加几”的进位加是在“9加几”进位加法的基础上学习,学生通过上节课的学习,已经掌握了“9加几”进位加法的计算方法,尤其是“凑十法”。考虑到学习可以利用计算方法的迁移来学习“8加几”的进位加。据此,本课时确定的教学重点是:能正确熟练地计算8加几。四、说难点:本课时教学中,学生会说多种方法计算,但对于何种方法优化,更适合自己有一定的难度。因此,本课的教学难点为:对“凑十法”的进一步理解;体会算法的多样化。
一、说教材1、教学内容《左右》是义务教育课程标准实验教科书数学一年级内容。2、教学内容的地位与作用《左右》是前后上下的延续性学习。但认识左右比认识前后上下要困难一些。“左右”的含义及其相对性要具有更强的空间观念。通过学习,可以发展学生的空间观念,为以后认识立体图形建立空间立体感打好基础,提高解决实际问题的能力,使学生初步感受数学与生活的联系。3、教学目标知识目标:认识“左右”的位置关系,体会其相对性。能力目标:在认识“左右”的过程中,培养初步的判断能力,能够运用“左右”描述物体的位置,并解决简单的实际问题。情感目标:通过生动有趣的数学活动,使学生体会到学习数学的乐趣,增强对数学学习的兴趣。
大家好,今天我说课的内容是《分物游戏》。下面我将从3个方面来阐述我对本节课的理解与设计。【说教材】《分物游戏》是北师大版小学数学二年级上册第七单元的内容,属于数与代数领域的有关内容。本节课是在学生初步了解乘法的意义,会用2-5的乘法口诀口算表内乘法的基础上进行教学的。且为学生今后认识除法和分数打下扎实的基础。教材提出了3个问题,引导学生一步步加深对“平均分”的理解,初步建立“平均分”的概念。问题1:分桃子:让学生感受分法的多样性,同时感受到“每份一样多”的方法最公平;问题2:分萝卜:让学生体会平均分分法的多样性与结果的一致性,体会平均分的意义。问题3:分骨头:体会平均分的过程并尝试用画图的方法表示平均分的过程与结果。本节课以实际操作为主要教学方式,让学生在操作中逐渐理解“平均分”的意义。
煤的价格为400元/吨,生产1吨甲产品除需原料费用外,还需其他费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完,设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.(1)写出m与x的关系式;(2)写出y与x的函数关系式.(不要求写自变量的取值范围)解析:(1)因为矿石的总量一定,当生产的甲产品的数量x变化时,那么乙产品的产量m将随之变化,m和x是动态变化的两个量;(2)题目中的等量关系为总利润y=甲产品的利润+乙产品的利润.解:(1)因为4m+10x=300,所以m=150-5x2.(2)生产1吨甲产品获利为4600-10×200-4×400-400=600(元);生产1吨乙产品获利为5500-4×200-8×400-500=1000(元).所以y=600x+1000m.将m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法总结:根据条件求一次函数的关系式时,要找准题中所给的等量关系,然后求解.
解 由题意可得,今年的年产值为a·(1+10%) 亿元,于是明年的年产值为a·(1+10%)·(1+10%)= 1.21a(亿元).若去年的年产值为2亿元,则明年的年产值为1.21a =1.21×2 = 2.42(亿元).答:该企业明年的年产值将能达到1.21a亿元.由去年的年产值是2亿元,可以预计明年的年产值是2.42亿元.例3 当x=-3时,多项式mx3+nx-81的值是10,当x = 3时,求该代数式的值.解 当x=-3时,多项式mx3+nx-81=-27m-3n-81, 此时-27m-3n-81=10, 所以27m+3n=-91.则当x=3,mx3+nx-81 =( 27m+3n )-81=-91-81=-172.注:本题采用了一种重要的数学思想——“整体思想”.即是考虑问题时不是着眼于他的局部特征,而是把注意力和着眼点放在问题的整体结构上,把一些彼此独立,但实质上又相互紧密联系着的量作为整体来处理的思想方法.
分析:(1)(2)用乘法的交换、结合律;(3)(4)用分配律,4.99写成5-0.01学生板书完成,并说明根据什么?略例3、某校体育器材室共有60个篮球。一天课外活动,有3个班级分别计划借篮球总数的 , 和 。请你算一算,这60个篮球够借吗?如果够了,还多几个篮球?如果不够,还缺几个?解:=60-30-20-15 =-5答:不够借,还缺5个篮球。练习巩固:第41页1、2、7、探究活动 (1)如果2个数的积为负数,那么这2个数中有几个负数?如果3个数的积为负数,那么这3个数中有几个负数?4个数呢?5个数呢?6个数呢?有什么规律? (2)逆用分配律 第42页 5、用简便方法计算(三)课堂小结通过本节课的学习,大家学会了什么?本节课我们探讨了有理数乘法的运算律及其应用.乘法的运算律有:乘法交换律:a×b=b×a;乘法结合律:(a×b)×c=a×(b×c);分配律:a×(b+c)=a×b+a×c.在有理数的运算中,灵活运用运算律可以简化运算.(四)作业:课本42页作业题
解:原式=(-47)×(3.94+2.41-6.35)=(-47)×0=0.方法总结:如果按照先算乘法,再算加减,则运算较繁琐,且符号容易出错,但如果逆用乘法对加法的分配律,则可使运算简便.探究点三:有理数乘法的运算律的实际应用甲、乙两地相距480千米,一辆汽车从甲地开往乙地,已经行驶了全程的13,再行驶多少千米就可以到达中点?解析:把两地间的距离看作单位“1”,中点即全程12处,根据题意用乘法分别求出480千米的12和13,再求差.解:480×12-480×13=480×(12-13)=80(千米).答:再行80千米就可以到达中点.方法总结:解答本题的关键是根据题意列出算式,然后根据乘法的分配律进行简便计算.新课程理念要求把学生“学”数学放在教师“教”之前,“导学”是教学的重点.因此,在本节课的教学中,不要直接将结论告诉学生,而是引导学生从大量的实例中寻找解决问题的规律.学生经历积极探索知识的形成过程,最后总结得出有理数乘法的运算律.整个教学过程要让学生积极参与,独立思考和合作探究相结合,教师适当点评,以达到预期的教学效果.
二.思考:(-2) 可以写成-2 吗?( ) 可以写成 吗?(指名学生回答,师生共同总结:负数和分数的乘方书写时,一定要把整个负数和分数用小括号括起来)三.计算:①(-2) ,②-2 ,③(- ) ,④ (叫4个学生上台板演,其他练习本上完成,教师巡视,确保人人学得紧张高效).(四)讨论更正,合作探究1.学生自由更正,或写出不同解法;2.评讲思考:将三题①③中将底数换成为正数或0,结果有什么规律?学生总结:负数的奇次幂是负数,负数的偶次幂是正数,正数的任何次幂都是正数,0的任何正整数次幂都为0。有理数的乘方就是几个相同因数积的运算,可以运用有理数乘方法则进行符号的确定和幂的求值.乘方的含义:①表示一种运算;②表示运算的结果.
解:由题意得a+b=0,cd=1,|m|=6,m=±6;∴(1)当m=6时,原式=06-1+6=5;(2)当m=-6时,原式=0-6-1+6=5.故a+bm-cd+|m|的值为5.方法总结:解答此题的关键是先根据题意得出a+b=0,cd=1及m=±6,再代入所求代数式进行计算.探究点三:有理数乘法的应用性问题小红家春天粉刷房间,雇用了5个工人,干了3天完成;用了某种涂料150升,费用为4800元,粉刷的面积是150m2.最后结算工钱时,有以下几种方案:方案一:按工算,每个工100元;(1个工人干1天是一个工);方案二:按涂料费用算,涂料费用的30%作为工钱;方案三:按粉刷面积算,每平方米付工钱12元.请你帮小红家出主意,选择哪种方案付钱最合算(最省)?解析:根据有理数的乘法的意义列式计算.解:第一种方案的工钱为100×3×5=1500(元);第二种方案的工钱为4800×30%=1440(元);第三种方案的工钱为150×12=1800(元).答:选择方案二付钱最合算(最省).方法总结:解此题的关键是根据题意列出算式,计算出结果,比较得出最省的付钱方案.
讨论归纳,总结出多个有理数相乘的规律:几个不等于0的因数相乘,积的符号由负因数的个数决定。当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个因数为0,积就为0。(2)几个不等于0的因数相乘时,积的绝对值是多少?(生:积的绝对值是这几个因数的绝对值的乘积.)例2、计算:(1) ;(2) 分析:(1)有多个不为零的有理数相乘时,可以先确定积的符号,再把绝对值相乘;(2)若其中有一个因数为0,则积为0。解:(1) = (2) =0练习(1) ,(2) ,(3) 6、探索活动:把-6表示成两个整数的积,有多少种可能性?把它们全部写出来。(三)课堂小结通过本节课的学习,大家学会了什么?(1)有理数的乘法法则。(2)多个不等于0的有理数相乘,积的符号由负因数的个数决定。(3)几个数相乘时,如果有一个因数是0,则积就为0。(4)乘积是1的两个有理数互为倒数。(四)作业:课本作业题
解析:∵ab>0,根据“两数相除,同号得正”可知,a、b同号,又∵a+b<0,∴可以判断a、b均为负数.故选D.方法总结:此题考查了有理数乘法和加法法则,将二者综合考查是考试中常见的题型,此题的侧重点在于考查学生的逻辑推理能力.让学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用.教学设计可以采用课本的引例作为探究除法法则的过程.让学生自己探索并总结除法法则,同时也让学生对比乘法法则和除法法则,加深印象.并讲清楚除法的两种运算方法:(1)在除式的项和数字不复杂的情况下直接运用除法法则求解.(2)在多个有理数进行除法运算,或者是乘、除混合运算时应该把除法转化为乘法,然后统一用乘法的运算律解决问题.
师生共同归纳法则2、异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。生5:这两天的库存量合计增加了2吨。(+3)+(-1)=+2 或(+8)+(-6)=+2师:会不会出现和为零的情况?提示:可以联系仓库进出货的具体情形。生6:如星期一仓库进货5吨,出货5吨,则库存量为零。(+5)+(-5)=0师生共同归纳法则3、互为相反数的两个数相加得零。师:你能用加法法则来解释法则3吗?生7:可用异号两数相加的法则。一般地还有:一个数同零相加,仍得这个数。小结:运算关键:先分类运算步骤:先确定符号,再计算绝对值做一做:(口答)确定下列各题中和的符号,并说明理由:(1)(+3)+(+7);(2)(-10)+(-3);(3)(+6)+(-5);(4)0+(-5).例 计算下列各式:(1)(-3)+(-4);(2)(-2.5)+5;(3)(-2)+0;(4)(+ )+(- )教法:请四位学生板演,让学生批改并说明理由。
(1)用简洁明快的语言概括大意,不能超过200字;(2)图表中能确定的数值,在故事叙述中不得少于3个,且要分别涉及时间、路和速度这三个量.意图:旨在检测学生的识图能力,可根据学生情况和上课情况适当调整。说明:练习注意了问题的梯度,由浅入深,一步步引导学生从不同的图象中获取信息,对同学的回答,教师给予点评,对回答问题暂时有困难的同学,教师应帮助他们树立信心。第四环节:课时小结内容:本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题。通过列出关系式解决问题时,一般首先判断关系式的特征,如两个变量之间是不是一次函数关系?当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.
由②得y=23x+23.在同一直角坐标系中分别作出一次函数y=3x-4和y=23x+23的图象.如右图,由图可知,它们的图象的交点坐标为(2,2).所以方程组3x-y=4,2x-3y=-2的解是x=2,y=2.方法总结:用画图象的方法可以直观地获得问题的结果,但不是很准确.三、板书设计1.二元一次方程组的解是对应的两条直线的交点坐标;2.用图象法解二元一次方程组的步骤:(1)变形:把两个方程化为一次函数的形式;(2)作图:在同一坐标系中作出两个函数的图象;(3)观察图象,找出交点的坐标;(4)写出方程组的解.通过引导学生自主学习探索,进一步揭示了二元一次方程和函数图象之间的对应关系,很自然的得到二元一次方程组的解与两条直线的交点之间的对应关系.进一步培养了学生数形结合的意识,充分提高学生数形结合的能力,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法.
学习目标1.掌握两个一次函数图像的应用;(重点)2.能利用函数图象解决实际问题。(难点)教学过程一、情景导入在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图所示.请你根据图象所提供的信息回答下列问题:甲、乙两根蜡烛燃烧前的高度分别是 厘米、 厘米,从点燃到燃尽所用的时间分别是 小时、 小时.你会解答上面的问题吗?学完本解知识,相信你能很快得出答案。二、 合作探究探究点一:两个一次函数的应用(2015?日照模拟)自来水公司有甲、乙两个蓄水池,现将甲池的中水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如下所示,结合图象回答下列问题.(1)分别求出甲、乙两个蓄水池中水的深度y与注水时间x之间的函数表达式;(2)求注入多长时间甲、乙两个蓄水池水的深度相同;(3)求注入多长时间甲、乙两个蓄水的池蓄水量相同;
解:设正比例函数的表达式为y1=k1x,一次函数的表达式为y2=k2x+b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函数的表达式为y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵点B在y轴的负半轴上,∴B点的坐标为(0,-52).又∵点B在一次函数y2=k2x+b的图象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函数的表达式为y2=118x-52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x与售价y的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.