二、病假条必须由相应医疗证明认可。由于上课、课外实习、病假等原因请假,应与认可,但核对如发现虚报者作缺席并加重处理。 三、事假原则上每月请假不得超过两次,否则取消当月评优资格。累计请假不得超过五次,否则取消学期评优资格。 四、请假条必须亲自书写,不得由他人代写,请假时间以不影响工作为原则,并做好善后工作。
2、教研组长必须按时到会,有病有事需履行请假手续。 3、教研组长会议的内容为传达精神,布置工作,汇报情况,处理问题。 4、教研组长会议时间一般定在每月初的周二下午举行。 5、如有重要事情时,可随时组织召开教研组长会议。 6、教研组长要认真做好会议记录,并及时向组内成员进行传达与安排。
1.生认真倾听老师范读,边听边思考:课文有几个自然段,写了有关粽子哪些方面的内容呢? 2.生回答老师提出的问题。3.生读第一自然段,并思考这一段的主要内容。 4.全班交流第一自然段的内容。5.观察田字格中生字“午”、“节”的笔顺和所占的位置,边描红,小组内讨论该注意的问题。6.展示并交流书写作品。7.生自读第2自然段,边读边完成老师提出的任务,组内讨论交流。8.全班交流:第2自然段主要写了端午粽哪些方面的内容呢?9.生朗读以下词语:箬竹叶糯米枣清香又黏又甜10.朗读第2自然段,在老师的引导下,准确找出相关句子:(1)外婆的粽子是用这些材料包成的:粽子是用青青的箬竹叶包的,里面裹着白白的糯米,中间有一颗红红的枣。(2)煮熟的粽子,清香扑鼻:外婆……一股清香。(3)外婆包的粽子味道美极了:剥开粽叶,……又黏又甜
教学内容:统一长度单位教材分析:通过量一量说一说想一想等活动切实感受到统一长度单位的必要性及其对生活的重要意义。学情分析:在上册“比一比”中学了比较物体长短的基础上学习的。尽管学生有这方面的经验和基础,但是长度单位的操作和应用是多种知识的综合,对小孩来说还是比较难的,在教学中应根据学生特点,注重实践性,培养观察力。教学目标:1、让学生通过量一量、说一说的活动,体验统一长度单位的过程,感受统一长度单位的必要性,为厘米、米的学习打下基础。2、让学生用不同实物作标准进行测量,培养学生的动手、思考能力,以及合作、估测的意识。3、通过不同的测量活动,让学生体验测量活动的过程,感受学习与生活的联系,体验学习数学的乐趣。
教 学 过 程教师 行为学生 行为教学 意图 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 在实际问题中,经常需要计算高度、长度、距离和角的大小,这类问题中有许多与三角形有关,可以归结为解三角形问题. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点*巩固知识 典型例题 例6 一艘船以每小时36海里的速度向正北方向航行(如图1-9).在A处观察到灯塔C在船的北偏东方向,小时后船行驶到B处,此时灯塔C在船的北偏东方向,求B处和灯塔C的距离(精确到0.1海里). 图1-9 A 解因为∠NBC=,A=,所以.由题意知 (海里). 由正弦定理得 (海里). 答:B处离灯塔约为海里. 例7 修筑道路需挖掘隧道,在山的两侧是隧道口A和(图1-10),在平地上选择适合测量的点C,如果,m,m,试计算隧道AB的长度(精确到m). 图1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的长度约为409m. 例8 三个力作用于一点O(如图1-11)并且处于平衡状态,已知的大小分别为100N,120N,的夹角是60°,求F的大小(精确到1N)和方向. 图1-11 解 由向量加法的平行四边形法则知,向量表示F1,F2的合力F合,由力的平衡原理知,F应在的反向延长线上,且大小与F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F与F1间的夹角是180°–33°=147°. 答:F约为191N,F与F合的方向相反,且与F1的夹角约为147°. 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 我们知道,在直角三角形(如图)中,,,即 ,, 由于,所以,于是 . 图1-6 所以 . 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 10*动脑思考 探索新知 在任意三角形中,是否也存在类似的数量关系呢? c 图1-7 当三角形为钝角三角形时,不妨设角为钝角,如图所示,以为原点,以射线的方向为轴正方向,建立直角坐标系,则 两边取与单位向量的数量积,得 由于设与角A,B,C相对应的边长分别为a,b,c,故 即 所以 同理可得 即 当三角形为锐角三角形时,同样可以得到这个结论.于是得到正弦定理: 在三角形中,各边与它所对的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列问题: (1)已知三角形的两个角和任意一边,求其他两边和一角. (2)已知三角形的两边和其中一边所对角,求其他两角和一边. 详细分析讲解 总结 归纳 详细分析讲解 思考 理解 记忆 理解 记忆 带领 学生 总结 20
四、范例学习、理解领会例2 某校墙边有甲、乙两根木杆。已知乙木杆的高度为1.5m.(1)某一时刻甲木杆在阳光下的影子如图5-6所示,你能画出此时乙木杆的影子吗?(用线段表示影子)(2)在图中,当乙木杆移动到什么位置时,其影子刚好不落在墙上?(3)在(2)的情况下,如果测得甲、乙木杆的影子长分别为1.24m和1m,那么你能求出甲木杆的高度吗?学生画图、 实验、观察、探索。五、随堂练习课本随堂练习 学生观察、画图、合作交流。六、课堂总结本节课通过各种实践活动,促进大家对内容的理解,本课内容,要体会物体在太阳光下形成的不同影子,在操作中观察不 同时刻影子的方向和大小变化特征。在同一时刻,物体的影子与它们的高度成比 例.
煤的价格为400元/吨,生产1吨甲产品除需原料费用外,还需其他费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完,设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.(1)写出m与x的关系式;(2)写出y与x的函数关系式.(不要求写自变量的取值范围)解析:(1)因为矿石的总量一定,当生产的甲产品的数量x变化时,那么乙产品的产量m将随之变化,m和x是动态变化的两个量;(2)题目中的等量关系为总利润y=甲产品的利润+乙产品的利润.解:(1)因为4m+10x=300,所以m=150-5x2.(2)生产1吨甲产品获利为4600-10×200-4×400-400=600(元);生产1吨乙产品获利为5500-4×200-8×400-500=1000(元).所以y=600x+1000m.将m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法总结:根据条件求一次函数的关系式时,要找准题中所给的等量关系,然后求解.
还有其他解法吗?从中让学生体会解一元一次方程就是根据是等式的性质把方程变形成“x=a(a为已知数)”的形式(将未知数的系数化为1),这也是解方程的基本思路。并引导学生回顾检验的方法,鼓励他们养成检验的习惯)5、提出问题:我们观察上面方程的变形过程,从中观察变化的项的规律是什么?多媒体展示上面变形的过程,让学生观察在变形过程中,变化的项的变化规律,引出新知识.师提出问题:1.上述演示中,题目中的哪些项改变了在原方程中的位置?怎样变的?2.改变的项有什么变化?学生活动:分学习小组讨论,各组把讨论的结果上报教师,最好分四组,这样节省时间.师总结学生活动的结果:-2x改变符号后从等号的一边移到另一边。师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.
然后,教师引导学生交流:你和同学沟通后,如果意见仍未达成一致,你会如何处理?板书:进行讨论,给对方充分解释的机会。设计意图:引导学生学懂得,与人沟通,在未能达成共识的情况下,要进行讨论,给对方充分解释的机会。环节三:课堂小结,内化提升学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:布置作业,课外延伸将学到的与人沟通的方法应用到生活中。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。六、板书设计为了突出重点,让学生整体上感知本节课的主要内容,我将以思维导图的形式设计板书:在黑板中上方的中间位置是课题《学会沟通交流》,下面是:敢于表达、准确地表达;倾听的技巧;进行讨论,给对方充分解释的机会。
1.上述演示中,题目中的哪些项改变了在原方程中的位置?怎样变的?2.改变的项有什么变化?学生活动:分学习小组讨论,各组把讨论的结果上报教师,最好分四组,这样节省时间.师总结学生活动的结果:-2x改变符号后从等号的一边移到另一边。师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.(三)理解性质,应用巩固师提出问题:我们可以回过头来,想一想刚解过的方程哪个变化过程可以叫做移项.学生活动:要求学生对课前解方程的变形能说出哪一过程是移项.对比练习: 解方程:(1) X+4=6 (2) 3X=2X+1(3) 3-X=0 (4) 9X=8X-3学生活动:把学生分四组练习此题,一组、二组同学(1)(2)题用等式性质解,(3)(4)题移项变形解;三、四组同学(1)(2)题用移项变形解,(3)(4)题用等式性质解.师提出问题:用哪种方法解方程更简便?解方程的步骤是什么?(答:移项法;移项、化简、检验.)
1、教师出示《人学通知书》,并提出以下问题:(1)同学们,你们在入学前收到入学通知书了吗?(2)我们每一个人都收到了一份《入学通知书》,我们学校的吉祥物也收到了,看视频回 忆自己的上学心情。2、教师播放歌曲:同学们,我们一起来听一首好听的歌曲。(播放课件:歌曲《上学歌》 板书课题《开开心心上学去》【完成目标一】环节二 共同回忆 感受快乐活动 2 共同回忆,感受快乐小朋友们,你们还记得我们学校的开学典礼吗?你看到了什么?听到了什么?感受到 了什么?【完成目标二】环节三 分享交流 拓展延伸 五、熟悉新环境1、播放课件,谈心情:老师课前准备了学校各处的照片,现在用幻灯片展示给大家看一看。 大家说一说,这么美丽的地方你喜欢吗?你知道可以在这些地方做什么吗?
一、树立事业心,增强责任心。 教书是手段,育人是目的。因此,教师在任何时候都不能忘记,自己不单单是为教书而教书的“教书匠”,而应是一个教育家,是人类灵魂的工程师。“以情育人,热爱学生;以言导行,诲人不倦;以才育人,亲切关心;以身示范,尊重信任”。热爱学生是教师职业道德的根本。教师对学生的爱,即是敬业精神的核心,又是教师高尚品德的自我表现,既是育人的目的,又是教师教书这个职业的具体表现。
一、树立事业心,增强责任心。 教书是手段,育人是目的。因此,教师在任何时候都不能忘记,自己不单单是为教书而教书的“教书匠”,而应是一个教育家,是人类灵魂的工程师。“以情育人,热爱学生;以言导行,诲人不倦;以才育人,亲切关心;以身示范,尊重信任”。热爱学生是教师职业道德的根本。教师对学生的爱,即是敬业精神的核心,又是教师高尚品德的自我表现,既是育人的目的,又是教师教书这个职业的具体表现。
【活动准备】 1、小兔手偶一个、魔术袋一个。 2、不同大小、不同颜色的圆形、三角形、正方形若干。 3、纸制小路(上面镂刻不同形状、不同大小、不同颜色的图形)。 【活动过程】 1、创设情境,引起幼儿参与活动的兴趣。 森林里,小兔的房子被大风吹倒了,我们一起帮它造一座房子吧。 2、帮小兔造房子,复习几何图形。 引导幼儿从魔术袋里摸出不同图形,并用摸出的几何图形给小兔造房子,复习圆形、三角形、正方形。
2、让幼儿大胆想象,运用几何图形进行拼搭创造。活动准备:图形宝宝图片、背景图、固体胶、纸、环境布置活动重点:复习巩固对几何图形的认识活动难点:运用几何图形进行拼搭创造活动流程:引出课题 游戏巩固 活动延伸
2、教育和引导全体员工遵守国家关于公共卫生管理的各项法律法规和《东台市爱国卫生管理办法》,积极参与社区组织的各项爱国卫生活动和共建工作,遵守社会公德,保护公共环境,维护公共卫生设施。 3、严格执行国家关于环境保护和职工劳动保护、女职工保护的各项法律法规,完善各项环境保护和职业病防护设施,正常开展环境保护、职业病防护和女职工保健宣传教育活动。
2、通过游戏,感受蛋宝宝变成小动物的快乐。 【活动准备】 1、鸡蛋、鸭蛋、鹌鹑蛋、鹅蛋、鸽子蛋等实物。 2、卡片若干。 3、神秘袋一个;欢快的音乐;工作毯一块。 【活动过程】 1、教室小心的将各种蛋装入神秘袋中,出示神秘袋问:“你们知道这个袋子里装的是什么吗?” 2、请幼儿依次摸一摸袋子,猜猜袋子里是什么? 幼儿猜出后将各种蛋一一取出,放在工作毯上,说出各种蛋的名称,比一比他们有什么不同。
2、感知 “1”和“许多”。 活动准备: 1、老师扮鸡妈妈,幼儿扮小鸡。 2、活动场地布置许多树、草(草内有若干鸡蛋和一只鸭蛋)。 3、一幅《母鸡生蛋》图,鸭木偶一个。 活动过程: 一、找蛋 1、老师和幼儿一起唱歌曲《母鸡下蛋》。 问:鸡宝宝你们听见了什么? 2、师:哎呀,我生了好多好多的蛋不知道掉到哪里去了,请你们帮我找一找。 幼儿找蛋。 二、还蛋 1、引导幼儿发现其中有一只不同的蛋。 2、师:这一只蛋怎么不一样的?和你们手里的蛋有什么不同?(颜色、大小)它不是妈妈生的?会是谁生的? 3、鸭妈妈找不到自己的蛋会怎样? 4、请鸡宝宝把鸭蛋还给鸭妈妈。看看鸭窝里有没有鸡妈妈生的蛋。
2、使幼儿懂得饭后漱口,早晚刷牙能保护牙齿,初步掌握正确的刷牙方法。3、通过活动,使幼儿养成良好的卫生习惯。活动准备: 1、被醋浸着的蛋壳和没有被醋浸过的蛋壳各一个。 2、VCD动画片《蛀牙大王》,护牙图片若干。 3、牙模型、牙刷一把,幼儿饼干,小镜子,纸杯,清水若干。 请专业牙科医生到活动现场活动过程: 一、引出课题,激发幼儿兴趣。 1、放碟片《蛀牙大王》,幼儿观看。 2、提问:动画片里的蛀牙大王为什么会有蛀牙?