多年的小学教学经验告诉我:小学高年级的学生已有一定的自学能力,关键是看我们设置的情景和学生的生活是不是紧密联系,是不是唤起了学生的已有表象,并不和使用多种媒体有绝对联系。所以在学习例题中我引导学生自主探讨,从中发现问题,提出问题,最后独立解决问题,从而训练学生数学语言表达能力,发展学生的创造性思维。⒋质疑问难。㈣新知总结对上面所学知识,教师引导学生作一次归纳总结,让学生明确要求圆周长时,必须设法求得圆的直径或半径。这样使学生对求圆周长有明确的认识,进一步深化重点。㈤新知运用国家教委加强与改进小学数学教学的意见中提出:基础训练是使学生融会贯通地掌握知识,形成熟练技能和发展智力的重要手段。所以在本节练习中我以基础练习为主,适当补充了提高练习。
一、说教材 说课的内容是《义务教育课程标准实验教科书 数学》一年级上册第六单元:《6—-10的认识和加减法》中的第二课时。这部分教材是为学生快速而正确进行6和7加减法计算做铺垫的内容。在这一阶段通过让学生初步经历从日常生活中抽象出数的过程,借助于生活中的实物和学生的操作活动进行教学,为学生了解数学的用处和体验数学学习的乐趣打下扎实的基础。基于以上认识,我确定本课的教学目标为: 1、知识目标:通过动手摆学具教学使学生学会从实际生活中抽象出数,掌握6和7的组成。 2.能力目标:培养学生观察、动手操作、口头表达的能力,渗透数学来源于生活,理解数学与日常生活的紧密联系,并运用于生活的辨证唯物主义思想。 3.情感目标:通过探究活动,激发学生学习的热情,培养学生主动探究的能力。 教材的重点、难点: 本节课的重点是:掌握6、7的组成。 本课难点是: ‘6、7的组成’在实际中的灵活运用。
二、说教法:根据以上分析,教学时,我主要采用电化教学、启发谈话、实物操作、合作交流等教学手段,创设一定的学习情境与和谐民主的学习氛围,自觉主动地获取知识。在教学中,充分发挥学生的主体地位,让他们通过动手摆小棒和图片,沟通新旧知识的联系,初步建立“倍”的概念,进而明白“一个数的几倍”的具体意义。三、说学法:1、通过操作活动,让学生体验“一个数的几倍”的含义。2、运用独立思考和合作交流相结合的学习方式,引导学生用简洁的语言有条理地表达自己的思考过程。四、说教学过程:本课教学过程充分依靠教材的编排思路,挖掘教材的编排特点,分以下环节进行教学。(一)创设情境,引入新课。由于倍的概念比较抽象,学生不容易理解,所以本节课创设情境,请3名女同学,6名男同学上台,诱导启发,并说明:男同学是女同学的2倍。这节课就来学习“倍的认识”。使学生对教学内容有熟悉感,为学生创设一种用数学眼光分析观察日常生活问题的能力,激发学习兴趣。
一、说教材(一)说教学内容:人教版小学数学三年级上册第九单元数学广角第一课时简单的排列。这节内容是在学生已经接触了一点排列与组合知识的基础上继续让学生通过观察、猜测、实验等活动找出事物的排列数和组合数。《标准》中指出“重要的数学概念与数学思想宜逐步深入”。所以,这节内容重在向学生渗透数学思想,并逐步培养学生有顺序地、全面的思考问题的意识。(二)说教学目标:1、让学生经历两种不同的事物进行简单的搭配的过程,学习有顺序有条理,由具体到抽象地进行思考,探索出共有多少种搭配方法的数量关系。2、让学生在探索过程中体会解决问题策略的多样性,发展思维能力,培养符号感。3、让学生在解决问题的过程中体会许多现实生活中的问题可以用数学方法去解决,从而增强对数学学习的兴趣。
(一) 激趣引入创设生活中的情景,目的是让学生感受数学的亲和力,激发学生对本节课知识学习的愿望。所以刚开课我就创设了这样的情景:在阳光明媚的三月,老师去了成都,一路上还录了象,你们想看看吗?在学生热情洋溢时,播放录象:(课件:汽车在告诉路上行使)看了录象让他们说说都看到了什么?当学生说到路牌时(课件:特写一个路牌200km)老师追问:在这个路牌上你又看到了什么?学生会发现两个新的字母km,接着让学生说说它表示的意思。如果学生能说出km表示千米,教师给予肯定,并引出课题,如果学生不能说出来,老师可以直接介绍:这是一个新的长度单位----千米。关于千米的知识你想了解些什么呢?让学生提出问题,然后教师揭示课题,今天我们就一起来认识千米,解决同学们关注的问题,并板书课题“千米的认识”。
(四)联系实际,应用周长在学生有了感性认识的基础上进一步理解周长的意义,并学会用周长的知识去解决一些简单的实际问题。播放光盘中的动画:有两只小蜗牛赛跑,它们都觉得自己跑的路线长,你有什么办法帮助他们解决这个问题吗?让学生想办法帮小蜗牛它们解决这个问题。光盘资源中的动画激发学生的学习兴趣,培养学生运用所知识解决问题的能力。这个环节的设计主要目的是让学生感受数学与生活的联系,增强学习的趣味性,感受数学在现实世界中有着广泛的应用。(五)总结全课同学们,这节课,我们认识了什么?你有什么收获吗?(我们从认识边线进而认识了周长,从探索不同形状的物体周长的测量方法,到尝试去计算各种图形的周长。在我们生活中,每个物体的表面都有它们各自的周长。周长的知识在生活中的应用还是很广泛的。
一、说教材:稍复杂的方程的教学任务例1教学解方程ax±b=c及其应用(列方程解形如ax±b=c的问题)(1)把解方程和用方程解决问题有机结合,在解决问题的过程中解较复杂的方程。(2)结合现实素材(足球上两种颜色皮的块数)引出,这种问题用算术方法解决思考起来比较麻烦。(3解方程的过程其实是由解若干基本方程构成的(y-20=4,2x=24),需要强调把2x看成一个整体。(4)可以列出不同的方程,如2x-4=20,关键是使学生理解数量关系。二、说学生:学生在前面已经学习了简单的方程数量关系,及简单方程式的解法,而且我在前面的教学中已经笨鸟先飞,让学生接触了形如:ax±b=c的方程式。三、说教法:根据学生的实际情况,我准备在教学过程中,重点讲解稍复杂方程式的数量关系式的分析研究,让学生根据应用题的题意列出正确的数量关系式。
为什么B和C的答案都对呢?(因为比还可以写成分数的形式,但是读还是读做几比几。)4、判断:(1)小明今年10岁,爸爸37岁,父亲和儿子的年龄比是10∶37。(2)一项工程,甲单独做要7天完成,乙单独做要5天完成,甲乙两人的工作效率比是7∶5。(3)大卡车的载重量是6吨,小卡车的载重量是3吨,大小卡车载重量的比是2。【2】第二层练习1、写出比值是2的比。【3】随机练习(看时间情况定)小明今年12岁,是六年一班学生,该班共有42个学生,小明爸爸今年38岁,在保险公司上班,每月工资1000元,年薪12000元,小明妈妈每月工资800元,年薪9600元,她所在单位有职工24人。要求:根据题目中提供的条件,寻找合适的量,说出两个数之间的比。五、课堂总结,拓展延伸。1、这节课学习了什么知识?你有什么收获?2、你能说出一些生活中的关于比的例子吗?(学生举例)
学生的学习活动是一个生动活泼而富有个性的过程,为了把学生探索的阵地从课堂延伸到课外,引导学生主动地应用所学的知识和方法解决实际问题。我又设计了以下练习题:1、脑筋乐园:学校田径运动会即将举行,你有办法帮学校在操场上画出一个半径为50米的圆吗?2、(1)应用圆的知识解释下列现象,并写出来。为什么井盖也得做成圆形的?人们在围观的时,为什么会自然地围成圆形?(2)搜集有关圆的资料。贴到教室的数学角上,大家共享。3、画出各种大小、不同颜色的圆,组合出一幅美丽的图画。(设计意图)将学生探索的阵地从课堂延伸到课外,引导学生主动地应用所学知识和方法解决实际问题。(我认为把本句提前,这里删去,这样显得更连贯)(五)全课总结1、让学生谈收获,进行自我评价。2、我对整节课进行知识要点归纳和对学生学习情况进行评价。(这样总结,我注重学生的自我评价,自我体验和个性发展。即学生情感的体验和收获)(我认为蓝色字那句可删去)
煤的价格为400元/吨,生产1吨甲产品除需原料费用外,还需其他费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完,设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.(1)写出m与x的关系式;(2)写出y与x的函数关系式.(不要求写自变量的取值范围)解析:(1)因为矿石的总量一定,当生产的甲产品的数量x变化时,那么乙产品的产量m将随之变化,m和x是动态变化的两个量;(2)题目中的等量关系为总利润y=甲产品的利润+乙产品的利润.解:(1)因为4m+10x=300,所以m=150-5x2.(2)生产1吨甲产品获利为4600-10×200-4×400-400=600(元);生产1吨乙产品获利为5500-4×200-8×400-500=1000(元).所以y=600x+1000m.将m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法总结:根据条件求一次函数的关系式时,要找准题中所给的等量关系,然后求解.
由②得y=23x+23.在同一直角坐标系中分别作出一次函数y=3x-4和y=23x+23的图象.如右图,由图可知,它们的图象的交点坐标为(2,2).所以方程组3x-y=4,2x-3y=-2的解是x=2,y=2.方法总结:用画图象的方法可以直观地获得问题的结果,但不是很准确.三、板书设计1.二元一次方程组的解是对应的两条直线的交点坐标;2.用图象法解二元一次方程组的步骤:(1)变形:把两个方程化为一次函数的形式;(2)作图:在同一坐标系中作出两个函数的图象;(3)观察图象,找出交点的坐标;(4)写出方程组的解.通过引导学生自主学习探索,进一步揭示了二元一次方程和函数图象之间的对应关系,很自然的得到二元一次方程组的解与两条直线的交点之间的对应关系.进一步培养了学生数形结合的意识,充分提高学生数形结合的能力,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法.
2. 在弹性限度内,弹簧的长度y(厘米)是所挂物体质量x(千克)的一次函数.当所挂物体的质量为1千克时弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y与x之间的函数关系式,并求当所挂物体的质量为4千克时弹簧的长度.答案: 当x=4是,y= 3. 教材例2的再探索:我边防局接到情报,近海处有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶,如图所示, , 分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.当时间t等于多少分钟时,我边防快艇B能够追赶上A。答案:直线 的解析式: ,直线 的解析式: 15分钟第五环节课堂小结(2分钟,教师引导学生总结)内容:一、函数与方程之间的关系.二、在解决实际问题时从不同角度思考问题,就会得到不一样的方法,从而拓展自己的思维.三、掌握利用二元一次方程组求一次函数表达式的一般步骤:1.用含字母的系数设出一次函数的表达式: ;2.将已知条件代入上述表达式中得k,b的二元一次方程组;3.解这个二元一次方程组得k,b,进而得到一次函数的表达式.
1.举例说明什么时候用普查的方式获得数据较好,什么时候用抽样调查的方式获得数据较好?2、下列调查中分别采用了那些调查方式?⑴为了了解你们班同学的身高,对全班同学进行调查.⑵为了了解你们学校学生对新教材的喜好情况,对所有学号是5的倍数的同学进行调查。3、说明在以下问题中,总体、个体、样本各指什么?⑴为了考察一个学校的学生参加课外体育活动的情况,调查了其中20名学生每天参加课外体育活动的时间.⑵为了了解一批电池的寿命,从中抽取10只进行实验。⑶为了考察某公园一年中每天进园的人数,在其中的30天里对进园的人数进行了统计。通过本节课的学习,同学们有什么收获和疑问?1、基本概念:⑴.调查、普查、抽样调查.⑵.总体、个体、样本.2、何时采用普查、何时采用抽样调查,各有什么优缺点?
由于题目较简单,所以学生分析解答时很有信心,且正确率也比较高,同时也进一步体会到了借助“线段图”分析行程问题的优越性.六、归纳总结:活动内容:学生归纳总结本节课所学知识:1.会借线段图分析行程问题.2.各种行程问题中的规律及等量关系.同向追及问题:①同时不同地——甲路程+路程差=乙路程; 甲时间=乙时间.②同地不同时——甲时间+时间差=乙时间; 甲路程=乙路程.相向的相遇问题:甲路程+乙路程=总路程; 甲时间=乙时间.目的:强调本课的重点内容是要学会借线段图来分析行程问题,并能掌握各种行程问题中的规律及等量关系.引导学生自己对所学知识和思想方法进行归纳和总结,从而形成自己对数学知识的理解和解决问题的方法策略.
三、课堂检测:(一)、判断题(是一无二次方程的在括号内划“√”,不是一元二次方程的,在括号内划“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a为常数) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空题.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次项是__________,一次项是__________,常数项是__________.2.如果方程ax2+5=(x+2)(x-1)是关于x的一元二次方程,则a__________.3.关于x的方程(m-4)x2+(m+4)x+2m+3=0,当m__________时,是一元二次方程,当m__________时,是一元一次方程。四、学习体会:五、课后作业
探究点三:列一元一次方程解应用题某单位计划“五一”期间组织职工到东湖旅游,如果单独租用40座的客车若干辆则刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)解析:(1)先设该单位参加旅游的职工有x人,利用人数不变,车的辆数相差1,可列出一元一次方程求解;(2)可根据租用两种汽车时,利用假设一种车的数量,进而得出另一种车的数量求出即可.解:(1)设该单位参加旅游的职工有x人,由题意得方程x40-x+4050=1,解得x=360,答:该单位参加旅游的职工有360人;(2)有可能,因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人,正好坐满.方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程再求解.
先让学生自己总结,然后互相交流,得出结论。解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。板书:解一元一次方程一般步骤:1、 去分母-----等式性质22、 去括号----去括号法则3、 移项----等式性质14、 合并同类项----合并同类项法则5、 系数化为1.----等式性质2【课堂练习】练习:解下列一元一次方程解方程: (2) ;思路点拔:(1)去分母所选的乘数应是所有分母的最小公倍数,不应遗漏。(2)用分母的最小公倍数去乘方程的两边时,不要漏掉等号两边不含分母的项。(3)去掉分母后,分数线也同时去掉,分子上的多项式用括号括起来。回顾解以上方程的全过程,表示了一元一次方程解法的一般步骤,通过去分母—去括号—移项—合并同类项—系数化为1等步骤,就可以使一元一次方程逐步向着 =a的形式转化。
判断下面抽样调查选取样本的方法是否合适:(1)检查某啤酒厂即将出厂的啤酒质量情况,先随机抽取若干箱(捆),再在抽取的每箱(捆)中,随机抽取1~2瓶检查;(2)通过网上问卷调查方式,了解百姓对央视春节晚会的评价;(3)调查某市中小学生学习负担的状况,在该市每所小学的每个班级选取一名学生,进行问卷调查;(4)教育部为了调查中小学乱收费情况,调查了某市所有中小学生.解析:本题应看样本是否为简单随机样本,是否具有代表性.解:(1)合适,这是一种随机抽样的方法,样本为简单随机样本.(2)不合适,我国农村人口众多,多数农民是不上网的,所以调查的对象在总体中不具有代表性.(3)不合适,选取的样本中个体太少.(4)不合适,样本虽然足够大,但遗漏了其他城市里的这些群体,应在全国范围内分层选取样本,除了上述原因外,每班的学生全部作为样本是没有必要的.
解析:当截面与轴截面平行时,得到的截面的形状为长方形;当截面与轴截面斜交时,得到的截面的形状是椭圆;当截面与轴截面垂直时,得到的截面的形状是圆,所以截面的形状不可能是三角形.故选A.方法总结:用平面去截圆柱时,常见的截面有圆、椭圆、长方形、类似于梯形、类似于拱形等.探究点三:截圆锥问题一竖直平面经过圆锥的顶点截圆锥,所得到的截面形状与下图中相同的是()解析:经过圆锥顶点的平面与圆锥的侧面和底面截得的都是一条线.如图,由图可知得到的截面是一个等腰三角形.故选B.方法总结:用平面去截圆锥,截面的形状可能是三角形、圆、椭圆等.三、板书设计教学过程中,强调学生自主探索和合作交流,经历操作、抽象、归纳、积累等思维过程,从中获得数学知识与技能,发展空间观念和动手操作能力,同时升华学生的情感态度和价值观.
[例3]、用一个平面去截一个几何体,截面形状有圆、三角形,那么这个几何体可能是_________。四、巩固强化:1、一个正方体的截面不可能是( )A、三角形 B、梯形 C、五边形 D、七边形2、用一个平面去截五棱柱,边数最多的截面是_______形.3*、用一个平面去截几何体,若截面是三角形,这个几何体可能是__________________________________________________.4*、用一个平面截一个几何体,如果截面是圆,你能想象出原来的几何体可能是什么吗?如虹截面是三角形呢?5*、如果用一个平面截一个正方体的一个角,剩下的几何体有几个顶点、几条棱、几个面?6*、几何体中的圆台、棱锥都是课外介绍的,所以我们就在这个栏目里继续为大家介绍这两种几何体的截面.(1)圆台用平面截圆台,截面形状会有_____和_______这两种较特殊图形,截法如下: