二、学情分析: 学生们对《品德与生活》的兴趣浓厚,他们喜欢和同伴进行交流,喜欢游戏活动,喜欢在活动中展示自己。三、指导策略:1、以活动贯穿全课。2、让学生在游戏活动中体验和感悟。3、将交警请到课堂,实现课堂的开放性。4、在交流合作中实现活动的有效互动。
考虑到幼儿未真正懂得暑假的含义,于是,在活动的前端,便设计了让幼儿了解“暑假”这个词语的含义。以便在接下来的活动中,让幼儿对暑假这个词汇容易理解和接受。由于幼儿大多是在家里过暑假,这便需要家长对安全知识有深刻的认识,需要家长认真配合做好安全教育工作。于是,我便设计了让家长填写一份《暑假安全知识调查表》,借助家长的力量帮助加强孩子们的安全意识。活动目标:1、使幼儿了解暑假中应注意的安全和卫生,增强幼儿的自我保护意识。2、通过讨论,激发幼儿向往过暑假的情感,教育幼儿愉快、合理地过暑假。3、培养幼儿完整、连贯地表达能力和对事物的判断能力。
活动准备:安全标志一个、蜡笔、纸。 活动过程:(一)讲讲: 出示安全标志 a.小朋友,这是什么? b.这是安全标志,有了这个标志,可以提醒大家这个地方要小心. c.这是警告标志,有了这个标志,代表这里有电,要小心!不要碰。 d.上个月,孙艳小朋友在厕所摔了一跤,如果,厕所里贴了这个安全标志,她肯定会小心的走上台阶,就不会摔跤了。
一、说教材(教材分析): 1. 教材所处的地位和作用: 本节内容在全书和章节中的作用是:《 》是 版数学教材第 册第 章第 节内容。在此之前学生已学习了 基础,这为过渡到本节的学习起着铺垫作用。本节内容是在 中,占据 的地位。以及为其他学科和今后的学习打下基础。2. 教育教学目标: 根据上述教材分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标: (1)知识目标: (2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力;
三、教学方式:讲述及案例分析四、教学过程(一)拥挤踩踏事故处理方式在公共场所发生人群拥挤踩踏事件是非常危险的,而那些空间有限,人群又相对集中的场所,例如球场、商场、狭窄的街道、室内通道或楼梯、影院等都隐藏着潜在的危险,当身处这样的环境中时,一定要提高安全防范意识。同时,在行进的人群中,如果前面有人摔倒,而后面不知情的人若继续向前行进的话,那么人群中极易出现像“多米诺骨牌”一样连锁倒地的拥挤踩踏现象。为此,专家分析认为,在人多拥挤的地方发生踩踏事故的原因有多种,一般来讲,当人群因恐慌、愤怒、兴奋而情绪激动失去来自理智时,危险往往容易产生。此时,如果你正好置身在这样的环境中,就非常有可能受到伤害。在一些现实的案例中,许多伤亡者都是在刚刚意识到危险时就被拥挤的人群踩在脚下,因此如何判别危险;怎样离开危险境地;如何在险境中进行自我保护,就显得非常重要。当发现前方有人突然摔倒后,旁边的人一定要大声呼喊,尽快让后面的人群知道前方发生了什么事,否则,后面的人群继续向前拥挤,就非常容易发生拥挤踩踏事故。面对混乱的场面,良好的心理素质是顺利逃生的重要因素,争取做到遇事不慌,否则大家都争先恐后往外逃的话,可能会加剧危险,甚至出现谁都逃不出来的惨剧。
·班会主旨·通过一系列的活动,让学生树立交通安全意识,从精神上远离交通安全隐患,加强自身的素质培养。为了贯彻落实公安部、教育部《关于加强中职学校交通安全工作的通知》精神,继续进一步搞好我校的交通安全教育,减少交通违章,杜绝交通事故。让学生了解交通活动中必备的安全知识,懂得安全的重要。·班会目标·1.通过本次班会,让学生接受一次深入的交通安全教育,使学生了解生命的可贵,掌握有关的交通安全知识。2.引导学生在丰富多彩的活动中掌握一些必要的交通规则,学会保护自己。3.加强对学生法制与交通安全的教育与管理,使学生增加法制观念,做到懂法、知法、守法,确保身心健康,平安完成学业。·班会地点·教室·班会重点·让学生知道各种常见的交通信号、标志和标线,知道有关交通常识,懂得应自觉遵守交通规则。
教育目的:1、让学生通过发生在生活当中真实的交通事故,明确其危害性和造成的原因。2、能够在日常生活当中自觉的遵守交通规则,懂得生命的宝贵,能够珍爱自己的生命。教学过程:一、导入师言:交通安全,一个永恒的话题。交通安全,一个涉及人生质量、家庭幸福的话题。1886年,当德国人卡尔?奔驰发明世界上第一辆以汽油做燃料的机动车以来,人类在向现代文明迈进的同时,也随之带来了交通事故这一灰色阴影。一个活蹦乱跳的躯体在一瞬间成为车轮下的亡灵,一个好端端的家庭因为惨痛的车祸而支离破碎,一百多年来死于车祸、伤残等交通事故的人数触目惊心,由此而造成的经济损失更是让人叹息。
教学目标:1、通过对食品中毒事故案例的介绍,让学生通过讨论等形式认识到食品安全的重要性。 2、通过本次班会活动,增强食品安全意识,对食品能够进行选择和鉴别。教学过程: 一、启发谈话 俗话说:民以食为天。一日三餐是人们生活中必不可少的。那么,同学们,当你平时享受那些花样繁多、种类齐全的儿童食品时,你是否想到了安全问题呢?今天,我们这节课就来谈谈关于食品安全的这个话题。 二、得到启迪 学生讲述自己生活中遇到的食品安全事故。 分组汇报:主要是市场、超市、商场、饭店、街边小摊(学生谈到的情况主要有以下几个方面:①烤羊肉串、烤肠的桌子又黑又脏,食品上叮着苍蝇,有沾满了灰尘。②制棉花糖的机器都是污垢,还不时会有脏东西掉进去,卖主自身也很脏,根本不讲卫生。③袋装食品没有明确的产地、商标,有的已过保质期。有的饭店厨房的卫生极差。
一、谈话引入:同学们生活在幸福、温暖的家庭里,受到父母和家人的关心、爱护,似乎并不存在什么危险。但是,家庭生活中仍然有许多事情需要备加注意和小心对待,否则很容易发生危险,酿成事故。下面就谈谈家居安全要注意什么:1.用电安全随着生活水平的不断提高,生活中用电的地方越来越多了。因此,我们有必要掌握一些基本的用电常识。(1)认识了解电源总开关,学会在紧急情况下关断电源。(2)不用湿手触摸电器,不用湿布擦拭电器。(3)电器使用完毕后应拔掉电源插头。(4)使用中发现电器有冒烟、冒火花、发出焦糊的异味等情况,应立即关掉电源开关,停止使用。(5)发现有人触电要设法及时关断电源;或者用干燥的木棍等物将触电者与带电的电器分开,不要用手直接救人。
一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是( )A.摸出的4个球中至少有一个是白球B.摸出的4个球中至少有一个是黑球C.摸出的4个球中至少有两个是黑球D.摸出的4个球中至少有两个是白球解析:∵袋子中只有3个白球,而有5个黑球,∴摸出的4个球可能都是黑球,因此选项A是不确定事件;摸出的4个球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪种情况,至少有一个球是黑球,∴选项B是必然事件;摸出的4个球可能为1黑3白,∴选项C是不确定事件;摸出的4个球可能都是黑球或1白3黑,∴选项D是不确定事件.故选B.方法总结:事件类型的判断首先要判断该事件发生与否是不是确定的.若是确定的,再判断其是必然发生的(必然事件),还是必然不发生的(不可能事件).若是不确定的,则该事件是不确定事件.
在探究估算方法的时候,教师要注重适时的引导,以免让学生无从下手.在教学过程中一定要让学生体会估算的实用价值,了解到“数学既来源与生活,又回归到生活为生活服务”.(二)课堂评价的一些思考在教学中要多鼓励学生用自己的语言表达他们的想法,在估算的过程中多给予适当的引导和评价,让学生逐步把握估算的方法,找到解决问题的信心.比如对“画能挂上去吗”这个问题情境,学生可能提出不同的看法,有些学生可能认为可以挂上去,因为人还有身高,完全可以弥补梯子稳定摆放的高度和挂画位置的高度之间的差距,有些学生可能认为,人不可能爬到梯子的顶部,加上人如果本来比较矮,画就不能挂上去等等想法,教师都应该给予肯定,这样才能激发学生思考问题的热情,调动学生探究问题的积极性.作为教师,一定要尊重学生的个体差异,满足多样化的学习需要,鼓励探究方式、表达方式和解题方法的多样化.
解析:①以O为圆心,任意长为半径作弧交OA于D,交OB于C;②以O′为圆心,以同样长(OC长)为半径作弧,交O′B′于C′;③以C′为圆心,CD长为半径作弧交前弧于D′;④过D′作射线O′A′,∠A′O′B′为所求.解:如下图所示.【类型三】 利用尺规作角的和或差已知∠AOB,用尺规作图法作∠A′O′B′,使∠A′O′B′=2∠AOB.解析:先作一个角等于∠AOB,再以这个角的一边为边在其外部作一个角等于∠AOB,那么图中最大的角就是所求的角.解:作法:①作∠DO′B′=∠AOB;②在∠DO′B′的外部作∠A′O′D=∠AOB,∠A′O′B′就是所求的角(如下图).三、板书设计1.尺规作图2.用尺规作角本节课学习了有关尺规作图的相关知识,课堂教学内容以学生动手操作为主,在学生动手操作的过程中要鼓励学生大胆动手,培养学生的动手能力和书面语言表达能力
解析:(1)根据图象的纵坐标,可得比赛的路程.根据图象的横坐标,可得比赛的结果;(2)根据乙加速后行驶的路程除以加速后的时间,可得答案.解:(1)由纵坐标看出,这次龙舟赛的全程是1000米;由横坐标看出,乙队先到达终点;(2)由图象看出,相遇是在乙加速后,加速后的路程是1000-400=600(米),加速后用的时间是3.8-2.2=1.6(分钟),乙与甲相遇时乙的速度600÷1.6=375(米/分钟).方法总结:解决双图象问题时,正确识别图象,弄清楚两图象所代表的意义,从中挖掘有用的信息,明确实际意义.三、板书设计1.用折线型图象表示变量间关系2.根据折线型图象获取信息解决问题经历一般规律的探索过程,培养学生的抽象思维能力,经历从实际问题中得到关系式这一过程,提升学生的数学应用能力,使学生在探索过程中体验成功的喜悦,树立学习的自信心.体验生活中数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣
求证:直角三角形的两个锐角互余.解析:分析这个命题的条件和结论,根据已知条件和结论画出图形,写出已知、求证,并写出证明过程.已知:如图所示,在△ABC中,∠C=90°.求证:∠A与∠B互余.证明:∵∠A+∠B+∠C=180°(三角形内角和等于180°),又∠C=90°,∴∠A+∠B=180°-∠C=90°.∴∠A与∠B互余.方法总结:解此类题首先根据题意将文字语言变成符号语言,画出图形,最后再经过分析论证,并写出证明的过程.三、板书设计命题分类公理:公认的真命题定理:经过证明的真命题证明:推理的过程经历实际情境,初步体会公理化思想和方法,了解本教材所采用的公理,让学生对真假命题有一个清楚的认识,从而进一步了解定理、公理的概念.培养学生的语言表达能力.
2.法解二元一次方程组,是提升学生求解二元一次方程的基本技能课,在例题的设置上充分体现化归思想.2.在学习二元一次方程组的解法中,关键是领会其本质思想——消元,体会“化未知为已知”的化归思想.因而在教学过程中教师通过对问题的创设,鼓励学生去观察方程的特点,在过手训练中提高学生的解答正确率和表达规范性,提升学生学会数学的信心,激发学习数学的兴趣.3.通过精心设计的问题,引导学生在已有知识的基础上,自己比较、分析得出二元一次方程组的解法,在巩固训练活动中,加深学生对“化未知为已知”的化归思想的理解.特别是如何由代入消元法到加减消元法,过渡自然。让学生深刻的体会到二元一次方程是一元一次方程的拓展,二元一次方程组又要通过“消元”,转化为一元一次方程求解,这样的转化,不仅有助于学生掌握知识、技能和方法,提高学习效率,而且还加深了对数学中通性和通法的认识,体会学习数学和研究数学的规律,提升数学思维能力.
第一环节感受生活中的情境,导入新课通过若干图片,引导学生感受生活中常常需要确定位置.导入新课:怎样确定位置呢?——§3.1确定位置。第二环节分类讨论,探索新知1.温故启新(1)温故:在数轴上,确定一个点的位置需要几个数据呢? 答:一个,例如,若A点表示-2,B点表示3,则由-2和3就可以在数轴上找到A点和B点的位置。总结得出结论:在直线上, 确定一个点的位置一般需要一个数据.(2)启新:在平面内,又如何确定一个点的位置呢?请同学们根据生活中确定位置的实例,请谈谈自己的看法.2.举例探究Ⅰ. 探究1(1)在电影院内如何找到电影票上指定的位置?(2)在电影票上“6排3号”与“3排6号”中的“6”的含义有什么不同?(3)如果将“6排3号”简记作(6,3),那么“3排6号”如何表示?(5,6)表示什么含义? (4) 在只有一层的电影院内,确定一个座位一般需要几个数据?结论:生活中常常用“排数”和“号数”来确定位置. Ⅱ. 学有所用(1) 你能用两个数据表示你现在所坐的位置吗?
在因式分解的几种方法中,提取公因式法师最基本的的方法,学生也很容易掌握。但在一些综合运用的题目中,学生总会易忘记先观察是否有公因式,而直接想着运用公式法分解。这样直接导致有些题目分解错误,有些题目分解不完全。所以在因式分解的步骤这一块还要继续加强。其实公式法分解因式。学生比较会将平方差和完全平方式混淆。这是对公式理解不透彻,彼此的特征区别还未真正掌握好。大体上可以从以下方面进行区分。如果是两项的平方差则在提取公因式后优先考虑平方差公式。如果是三项则优先考虑完全平方式进行因式分解。培养学生的整体观念,灵活运用公式的能力。注重总结做题步骤。这章节知识看起来很简单,但操作性很强的,相同或者相似的式子比较熟悉而需要转化的或者多种公式混合使用的式子就难以入手,基础不好的学生需要手把手的教,因此,应该引导学生总结多项式因式分解的一般步骤①如果多项式的各项有公因式,那么先提公因式;
教学效果:部分学生能举一反三,较好地掌握分式方程及其应用题的有关知识与解决生活中的实际问题等基本技能.第六环节 课后练习四、教学反思数学来源于生活,并应用于生活,让学生用数学的眼光观察生活,除了用所学的数学知识解决一些生活问题外,还可以从数学的角度来解释生活中的一些现象,面向生活是学生发展的“源头活水”.在解决实际生活问题的实例选择上,我们尽量选择学生熟悉的实例,如:学生身边的事,购物,农业,工业等方面,让学生真切地理解数学来源于生活这一事实。有些学生对应用题有一种心有余悸的感觉,其关键是面对应用题不知怎样分析、怎样找到等量关系。在教学中,如果采用列表的方法可帮助学生审题、找到等量关系,从而学会分析问题。可能学生最初并不适应这种做法,可采用分步走的方法,首先,让学生从一些简单、类似的问题中模仿老师的分析方法,然后在练习中让学生悟出解决问题的窍门,学会举一反三,最后达到能独立解决问题的目的。
解:(1)∵AB、CD互相垂直平分,∴OC=OD,AO=OB,且AC=BC=AD=BD;(2)OE=OF,理由如下:在△AOC和△AOD中,∵AC=AD,OC=OD,AO=AO,∴△AOC≌△AOD(SSS),∴∠CAO=∠DAO.又∵OE⊥AC,OF⊥AD,∴OE=OF.方法总结:本题是线段垂直平分线的性质和角平分线的性质的综合,掌握它们的适用条件和表示方法是解题的关键.三、板书设计1.角平分线的性质定理角平分线上的点到这个角的两边的距离相等.2.角平分线的判定定理在一个角的内部,到角的两边距离相等的点在这个角的平分线上.本节课由于采用了动手操作以及讨论交流等教学方法,从而有效地增强了学生对角以及角平分线的性质的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生在性质的运用上还存在问题,需要在今后的教学与作业中进一步的加强巩固和训练.
2.如何找一条线段的黄金分割点,以及会画黄金矩形.3.能根据定义判断某一点是否为一条线段的黄金分割点.Ⅳ.课后作业习题4.8Ⅴ.活动与探究要配制一种新农药,需要兑水稀释,兑多少才好呢?太浓太稀都不行.什么比例最合适,要通过试验来确定.如果知道稀释的倍数在1000和2000之间,那么,可以把1000和2000看作线段的两个端点,选择AB的黄金分割点C作为第一个试验点,C点的数值可以算是1000+(2000-1000)×0.618= 1618.试验的结果,如果按1618倍,水兑得过多,稀释效果不理想,可以进行第二次试 验.这次的试验点应该选AC的黄金分割点D,D的位置是1000+(1618-1000)×0.618,约等于1382,如果D点还不理想,可以按黄金分割的方法继续试验下去.如果太浓,可以选DC之间的黄金分割 点 ;如果太稀,可以选AD之间的黄金分割点,用这样的方法,可以较快地找到合适的浓度数据.这种方法叫做“黄金分割法”.用这样的方法进行科学试验,可以用最少的试验次数找到最佳的数据,既节省了时间,也节约了原材料.●板书设计