2、鼓励幼儿尝试用绘画的方式进行记录。 活动准备: 教师:记录表,空旷的场地、选择有风的日子进行探索活动,区角延伸活动。活动前的安全教育。 幼儿:绘画用具。 活动重点:感知风的存在,并用恰当的语言进行描述。 活动难点:鼓励幼儿用绘画的方式记录。 四、活动过程: 1、情景提问,导入活动、 我们一起到外面去做个实验吧。 2、带幼儿到户外,实验是找风!你们想做这个实验吗? 探索活动,猜想假设1、你觉得怎么样才能证明你知道有风?哪些事物可以证明风来了?(请幼儿猜想假设) 2、 风来了,身边的事物会怎么样? 生:风来了,地上的纸头回飘起来;我会感到冷;树木会摇来摇去…..
活动目标:1、运用已有的数经验进行10以内的数数,初步感知数的守恒。2、通过倾听故事,体会孩子对母亲的爱。活动准备:课件《爱心礼物》、黑板两块、操作表格数份、红五星若干。活动过程:一、故事《大大和小小》导入二、大大选裙子(在贴一贴的游戏中初步感知物体不受大小、排列方式、疏密程度影响的守恒关系。)1、观察裙子(裙子有什么不一样?裙子上的数字是什么意思?)小结:这些数字是裙子上的编号,上面有数字1的说明是1号裙子。2、帮助大大选花最多的裙子送给妈妈,让孩子思考选择。3、贴一贴:你认为花最多的是哪条裙子?为什么?(孩子观察表格后再贴)4、讨论验证:(活动的关键,引发幼儿争论通过验证来解决问题)(1)到底是哪一条呢?你是怎么知道这条裙子上的小花是最多的?(2)产生解决办法(运用已有的数数经验)(3)小结:原来,裙子上的花是一样多的,你们用数一数的办法找到了正确答案,所以我们不能只看花的大小、排列方式来决定花朵的多少而是要用数数的方法。 三、小小选裙子(迁移运用,继续感知物体数量的守恒)1、帮助小小选花最少的裙子送给妈妈。(把五角星贴在相应的框里)2、填表格最后一格:裙子上花有几朵?3、验证小结:原来,裙子上的花是一样多的,所以我们不能只用眼睛看的办法,有时候我们的眼睛也会欺骗自己,我们就需要用数一数的办法才能知道正确的答案。
活动准备 拉线木偶玩具一个(或用纸板制成的活动拉线木偶人)。(准备的材料是用来创设游戏情境的。若没有活动木偶,也可以采用手偶教具代替。)活动过程1.示木偶人创设游戏情境,引起幼儿的兴趣。 教师以小木偶的El吻向大家自我介绍:“我是木头人。今天我想和小朋友一起玩一个游戏,名字叫‘山上有个木头人。”接着,教师边操作木偶拉线,边念儿歌,帮助幼儿了解游戏的基本内容。 表演结束后,教师继续以木偶的口吻与幼儿交谈。教师可以这样说:“谁想和我玩游戏呢?那你必须先告诉我,刚才我说了些什么?”引导幼儿回忆儿歌内容,学会念游戏儿歌,正确发出每个字音,特别是“山”“上”“三”。(活动开始,采用木偶表演的形式创设游戏情境,更符合小班幼儿的认知特点,更能吸引小班幼儿的注意力,激发幼儿对游戏的兴趣。 在此活动中,教师通过语言激发幼儿学念儿歌,在幼儿学习过程中,要及时纠正幼儿的不正确发音,教幼儿正确地念儿歌·这样可以为以后顺利开展游戏奠定基础。)2.向幼儿介绍游戏的规则及玩法。(1)游戏时须念儿歌,并可自由做动作。儿歌做完后就不能动,也不能发出声音。(2)如果谁动了或发出了声响,就必须将手伸给同伴,而同伴则拉住他的手说:“本来要打千千万万下,因为时间来不及马马虎虎打三下。”然后边拍同伴的手心边说:“一、二、三。游戏结束。(听说游戏规则中一定要包含语言练习的要求,否则就不能达成语言学习的目标。此游戏规则中要求幼儿边念儿歌边进行游戏,这就充分体现了语言练习的要求。 对于小班幼儿来说,教师制定的规则一定要简单,语言也一定要简洁明了,以便于幼儿理解游戏的规则,基本了解游戏的玩法。)
2、发展幼儿思维的可逆性、传递性和双重性。 3、培养幼儿爱动脑爱学习的良好习惯。活动准备:7张厚薄不同的图书图片;7张高矮相同、粗细不同的树干图片 活动过程: 一、开始部分 老师这里有一些你们的好朋友,想不想知道是谁呀! 二、基本部分 1、厚薄的排序 (出示厚薄不同的图片,7张)。你们知道他们是谁吗? 可是他们没有名字,很伤心,我们来帮他们把名字起了好吗?<让幼儿按照从薄到厚的顺序〉
2、活动定位——概括提升原有经验梳理、归纳、概括是集体教学活动的主要任务,本活动以经验呈现——概括提升——巩固运用为主线,通过实践操作和交流分享引导幼儿主动建构经验,感受统计的重要和有趣。3、教材价值——培养统计意识,发展数学思维统计是探究性实践活动的一种形式,包括收集信息、处理信息和得出结论的过程。本活动不仅发展幼儿的计数、比较数量等数学技能,更重要的是在辩析的过程中学习统计记录的方法,有助于培养统计意识,形成科学的思维能力。二、活动目标1、在游戏情境中萌发对统计的兴趣,感知统计的作用。2、经历数据的收集、整理过程,通过数量比较判断输赢。知道收集数据的方法是多样的,学习用记录的方法收集数据,在经验分享和解决问题的过程中发展初步的分析、综合能力。三、活动准备经验准备:幼儿有玩竞赛性游戏的经验材料准备:实物投影仪、黑板、记录纸、笔等
2、能仔细观察图片,能独立地找出不同的特征尝试进行分合。 3、乐于接受和尝试新的方法进行操作。 活动准备: 经验准备:幼儿已学习过7、8的组成。 物质准备: 教具:乌龟一家的图片(图上有7只乌龟,1只大乌龟,六只小乌龟,三只在岸上,四只在水里) 学具:《幼儿用书》(P7页)幼儿人手一支笔。 活动过程: ※乌龟一家出来玩 ——教师(出示一张“乌龟一家”的图片),今天天气真好啊,乌龟一家出来玩啦,看,这儿有几只乌龟?他们都一样吗?哪儿不一样啊? ——提醒幼儿先记录总数,再引导幼儿观察图上有的乌龟有什么相同与不同的地方。 ——教师:我们发现了许多不一样的地方,谁按这些不同把乌龟分成两组? ——幼儿思考并尝试将乌龟分成两组,说一说:大乌龟有几只,小乌龟有几只,根据大小特征,用分合式记录乌龟的数量。然后再找出一个不同点分一分并记录,如:按乌龟所在的位置不同,分为三只在岸上和四只在水里等。
2、尝试用自己的语言讲述三幅图的意思。 3、专心地进行自己的操作活动。经验准备:幼儿学习过2的组成。 物质准备: ——小螃蟹图片,2个泡泡,数字1、1、2,符号+、—、=。 ——学具:《幼儿用书》P33页,幼儿人手一支笔。活动过程1、 小螃蟹吐泡泡。 ——教师出示一只小螃蟹图片,边演示边引导幼儿观察:小螃蟹吐泡泡,它是怎么吐的?鼓励幼儿讲述小螃蟹先吐了1个泡泡,又吐了1个泡泡,小螃蟹一共吐了2个泡泡。 ——启发幼儿思考:小螃蟹先吐的1个泡泡可以用数字几表示?又吐的1个泡泡可以用什么符号和数字几表示?一共吐了2个泡泡可以用什么符号和数字几表示? 引出“+”和“=“,初步了解加号表示把它两边的数合起来,让幼儿知道可以用”+“表示又吐出了1个泡泡;等号表示它两边的数一样多。幼儿认读并空手练习书写加号、等号。 ——教师完整地列出算式1+1=2,引导幼儿说一说这个算式表示什么意思。
3、在活动中诱发幼儿形成遵守时间与爱惜时间的良好习惯。活动准备:1、教具:有关各种时钟的幻灯片;时钟一面,可活动钟面一只;表示7、8、9、10点钟的钟面各一只,时间记录卡各一张。2、学具:幼儿观察记录表每人一份,活动钟面每人一份;实物时钟4只。活动过程:一、调动已有经验,回忆相关知识。1、前段时间我们小朋友和老师一起做了有关时钟的调查,知道时钟有好多好多种。现在请你看看老师从网上下载的钟,看看你认识它吗?2、依次出示幻灯片,幼儿讲名称。3、刚才我们所见到的只是时钟家族的一部分,它可能还有其他的种类,我们以后再来探讨。4、上次我们已经认识过钟面,来告诉大家,最长的针叫(秒针),有点长的针叫(分针),最短的针叫时针。钟面上一共有多少个数字(12),最上面的是数字12,然后依次是1、2……11。请你好好回忆一下,时钟里的指针是朝哪一个方向走的?(1……12)对了,这样的方向就叫顺时针方向。二、交流调查表,说说自己在什么时间,正在干什么?1、小朋友们说的真好,那你知道我们人为什么要使用钟吗?2、钟与我们人的生活有着密切的关系,前几天我们小朋友已经做过了一个调查,将自己活动的时间记录了下来,现在请你拿出自己的调查表,说说你在什么时间在干什么?你只要说出长针在几,短针在几的时候,你在干什么?好我们先自己说。3、谁愿意上来说给大家听。(请3—4个小朋友上来说)。
本节课选自《普通高中课程标准实验教科书数学必修1》5.6.2节 函数y=Asin(ωx+φ)的图象通过图象变换,揭示参数φ、ω、A变化时对函数图象的形状和位置的影响。通过引导学生对函数y=sinx到y=Asin(ωx+φ)的图象变换规律的探索,让学生体会到由简单到复杂、由特殊到一般的化归思想;并通过对周期变换、相位变换先后顺序调整后,将影响图象变换这一难点的突破,让学生学会抓住问题的主要矛盾来解决问题的基本思想方法;通过对参数φ、ω、A的分类讨论,让学生深刻认识图象变换与函数解析式变换的内在联系。通过图象变换和“五点”作图法,正确找出函数y=sinx到y=Asin(ωx+φ)的图象变换规律,这也是本节课的重点所在。提高学生的推理能力。让学生感受数形结合及转化的思想方法。发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。
一、思想上 一年来,我时时处处不忘加强思想政治学习。严格要求自己,处处做同志们的表率,发挥模范带头作用。一年来,我从不因故请假,迟到,旷工。不怕苦,不怕累,总是以百倍的热情投入到工作之中。 二、工作上 一年来,我服从学校领导的分配,认真完成学校交给的各项工作任务。在教学中,我虚心向老教师请教,认真钻研新大纲、吃透教材,积极开拓教学思路,把一些先进的教学理论、科学的教学方法及先进现代教学手段灵活运用于课堂教学中,努力培养学生的合作交流、自主探究、勇于创新等能力。另外,本人在搞好教学工作的同时,还很注重教学经验的积累。发表教学论文1篇。 在搞好工作的同时,我还不忘与同志们搞好团结,尊敬领导及同事,真诚的对待每一位同志。 在这一年的工作中,我得到了学校领导,教师们及学生们的好评。但是,检查起来,所存在的缺点毛病也是不少的,还需今后努力改正。主要缺点还有以下几个方面:一是理论知识的学习还是欠缺,还存在有懒惰思想;二是工作虽然很努力,可是个人能力还有待提高,学生成绩进步不是很快。今后,我一定在校领导及全体同志们的帮助下,加强学习,提高工作能力,使自己的思想和工作都能更上一个台阶!
活动目标:1.探索泡沫垫的多种玩法。 2.结合数字规律练习单脚跳、双脚跳及跨跳等多种跳的能力及动作的协调能力。 3.努力听清教师指令,遵守游戏规则。活动准备:人手一块泡沫垫,1~10的数字卡片2套。活动过程:一.开始部分。今天天气真不错,我们一起来玩玩吧!(幼儿随铃鼓的变化变大圆----小圆----蜗牛圆) 二.基本部分。1. 出示泡沫垫,你们知道这是什么吗?它有什么用?泡沫垫除了可以作为垫子,还可以和我们玩游戏呢?我们一起来试试。现在小朋友们分成2组游戏,可以自己玩,也可以和同组的小伙伴一起玩。(幼儿四散游戏)
(二)活动准备: 1.一幢7层楼的房子 2.1——7的数字卡 3.7个动物(大象、鸭子、小狗、小猫、老鼠、公鸡、兔子) (三)活动过程: 1.复习7以内的数量。 师:“熊猫老师开始上课了,看看它又哪些学生?共有几个学生?我们一起数一数?(数字7)” 2.引导幼儿帮助动物排队,初步感知理解序数的意义。 “熊猫老师要带它的动物朋友出去做游戏了,它要求小动物排着一条整齐的队伍出去,我们来帮助它们排队,好吗?(出示小红旗),排队要有个要求,要从红旗这里排,从左往右一个一个排在红线上。 (1)你们真棒,很快就帮小动物们排好了队。 (2)排在第一个的是谁?谁排在第三个?大象排在第几个?
2.分析写作特点。本文是如何把议论、抒情和叙事融为一体的?预设 本文是奏章,内容是作者出师前向后主刘禅陈述意见,提出修明政治、兴复汉室的主张。因此,全文以议论为主,在议论中融以叙事和抒情,以做到对刘禅晓之以理、动之以情而达到劝谏的目的。论述切中要害,分析透辟,针对性强;寓情于议,情理交融,言辞恳切,说服力强。叙事,寓情于事,委婉动人,感情真挚。所叙之事如推荐贤才,讲身世,谈经历,都是为议论服务,使他对刘禅提出的建议与要求有理有据,更能使人信服。 结束语:诸葛亮知恩图报,忠心为国。他有高度的责任感、使命感,他为国家鞠躬尽瘁,死而后已,当我们吟诵“出师未捷身先死,长使英雄泪满襟”的诗句时,会深深地体味出杜甫对诸葛亮的仰慕和惋惜之情;当我们解读“出师一表真名世,千载谁堪伯仲间”这两句诗时,更是深深地被陆游满腔豪情所感染。四、布置作业
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.
一、复习回顾,温故知新1. 任意角三角函数的定义【答案】设角 它的终边与单位圆交于点 。那么(1) (2) 2.诱导公式一 ,其中, 。终边相同的角的同一三角函数值相等二、探索新知思考1:(1).终边相同的角的同一三角函数值有什么关系?【答案】相等(2).角 -α与α的终边 有何位置关系?【答案】终边关于x轴对称(3).角 与α的终边 有何位置关系?【答案】终边关于y轴对称(4).角 与α的终边 有何位置关系?【答案】终边关于原点对称思考2: 已知任意角α的终边与单位圆相交于点P(x, y),请同学们思考回答点P关于原点、x轴、y轴对称的三个点的坐标是什么?【答案】点P(x, y)关于原点对称点P1(-x, -y)点P(x, y)关于x轴对称点P2(x, -y) 点P(x, y)关于y轴对称点P3(-x, y)
《基本不等式》在人教A版高中数学第一册第二章第2节,本节课的内容是基本不等式的形式以及推导和证明过程。本章一直在研究不等式的相关问题,对于本节课的知识点有了很好的铺垫作用。同时本节课的内容也是之后基本不等式应用的必要基础。课程目标1.掌握基本不等式的形式以及推导过程,会用基本不等式解决简单问题。2.经历基本不等式的推导与证明过程,提升逻辑推理能力。3.在猜想论证的过程中,体会数学的严谨性。数学学科素养1.数学抽象:基本不等式的形式以及推导过程;2.逻辑推理:基本不等式的证明;3.数学运算:利用基本不等式求最值;4.数据分析:利用基本不等式解决实际问题;5.数学建模:利用函数的思想和基本不等式解决实际问题,提升学生的逻辑推理能力。重点:基本不等式的形成以及推导过程和利用基本不等式求最值;难点:基本不等式的推导以及证明过程.
本节主要内容是三角函数的诱导公式中的公式二至公式六,其推导过程中涉及到对称变换,充分体现对称变换思想在数学中的应用,在练习中加以应用,让学生进一步体会 的任意性;综合六组诱导公式总结出记忆诱导公式的口诀:“奇变偶不变,符号看象限”,了解从特殊到一般的数学思想的探究过程,培养学生用联系、变化的辩证唯物主义观点去分析问题的能力。诱导公式在三角函数化简、求值中具有非常重要的工具作用,要求学生能熟练的掌握和应用。课程目标1.借助单位圆,推导出正弦、余弦第二、三、四、五、六组的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题2.通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。
探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.