亲爱的老师,同学们:早上好!我是来自606班的陈宇佳。今天,我想和同学们谈一谈“低碳生活,从我做起”的话题。早春三月,应是草长莺飞,桃花含苞欲放的日子,但就在上周末,一场纷纷扬扬的大雪与我们的美丽校园不期而遇,当同学们踩着皑皑白雪,一定不会有寒冬雪天里打雪仗的那份畅快,却会有着一份淡淡的忧思地球----这个被水蓝色纱衣包裹着的美丽星球!近年来是愈来愈不太平,我们放眼世界,地球生存环境对人类似乎并不那么乐观:火山、地震、海啸等地质灾害一个个接踵而至;暴雪、洪涝、干旱、异常气象等自然灾害频发。让我们冷静思考一下,这是大自然的错吗?为何大自然突然变得不再“亲切”这一系列的灾难正是在全球气候变暖的背景下产生的。自上世纪80年代以来,随着人类活动的加剧,向空气中排放的温室气体不断增加,导致全球气候变暖,也让人类面临更加恶劣的生存环境。这一变化得到了人们的高度关注,大家都在力图用各种方法来应对气候变化,而改善我们地球环境的最有效手段就是节能减排,做到低碳生活。
活在当下尊敬的各位老师,亲爱的同学们:大家早上好!很荣幸做国旗下的讲话,我演讲的题目是《活在当下》。一位作家曾经说过,我一直哭一直哭,哭我没有鞋穿,可直到我看见一个,他连脚都没。是的,我们可能没有鞋,但我们不应该不珍惜自己的脚。如果有一天,我们连脚也没有了,才知道鞋不是最重要的,那样会不会太晚,所以,我想说:珍惜当下,活在当下。活在当下是一种态度,沉迷过去无法自拔,那不是我们的个性,好高骛远,也不是我们的风格,我们需要的只是珍惜现在的自己,珍惜所有的一切,不必要留恋,也不必要幻想,对我们而言,眼前应当是最重要的,如果没有了现在,还谈什么未来。活在当下是一种享受,外面的世界再美,我们也不要被新鲜事物给迷惑了。现在我们只需要享受眼前所拥有的,珍惜所拥有的,这才是我们最宝贵的。用我们最美的年纪来享受我们宝贵的青春。
品味低碳生活低碳的生活是一件非常环保和文明的事。我对低碳的理解就是在日常生活中从自己做起,从小事做起,最大限度地减少一切可能的消耗。其实,低碳的生活离每个人都很近,只要多注意生活中的一些细节,就可以起到降低能源消耗的作用。除了植树,还有人买运输里程很短的商品,有人坚持爬楼梯,形形色色,有的很有趣,有的不免有些麻烦。但关心全球气候变暖的人们却把减少二氧化碳实实在在地带入了生活。节约每一滴水、每一度电;能步行上学、上班,就不坐车;尽可能乘坐公交车出行,少开燃油汽车。从我们身边一点一滴的小事做起,选择低碳生活,做一个环保小卫士,其实很简单。平时我们勤动手动脑,也可以实现"低碳"。一般家庭都有很多废弃的盒子,如肥皂盒、牙膏盒、奶盒等,其实稍加裁剪,就可以轻松将它们废物利用,比如制作成储物盒,可以在里面放茶叶包、化妆品之类的物品;还可以利用方便面盒、罐头瓶、酸奶瓶制作一盏漂亮的台灯;喝过的茶叶渣,晒干做一个茶叶枕头,既舒适还能改善睡眠……
品味低碳生活低碳的生活是一件非常环保和文明的事。我对低碳的理解就是在日常生活中从自己做起,从小事做起,最大限度地减少一切可能的消耗。其实,低碳的生活离每个人都很近,只要多注意生活中的一些细节,就可以起到降低能源消耗的作用。除了植树,还有人买运输里程很短的商品,有人坚持爬楼梯,形形色色,有的很有趣,有的不免有些麻烦。但关心全球气候变暖的人们却把减少二氧化碳实实在在地带入了生活。节约每一滴水、每一度电;能步行上学、上班,就不坐车;尽可能乘坐公交车出行,少开燃油汽车。从我们身边一点一滴的小事做起,选择低碳生活,做一个环保小卫士,其实很简单。平时我们勤动手动脑,也可以实现"低碳"。一般家庭都有很多废弃的盒子,如肥皂盒、牙膏盒、奶盒等,其实稍加裁剪,就可以轻松将它们废物利用,比如制作成储物盒,可以在里面放茶叶包、化妆品之类的物品;还可以利用方便面盒、罐头瓶、酸奶瓶制作一盏漂亮的台灯;喝过的茶叶渣,晒干做一个茶叶枕头,既舒适还能改善睡眠……
亲爱的老师,同学们:早上好!我是来自606班的陈宇佳。今天,我想和同学们谈一谈“低碳生活,从我做起”的话题。早春三月,应是草长莺飞,桃花含苞欲放的日子,但就在上周末,一场纷纷扬扬的大雪与我们的美丽校园不期而遇,当同学们踩着皑皑白雪,一定不会有寒冬雪天里打雪仗的那份畅快,却会有着一份淡淡的忧思地球----这个被水蓝色纱衣包裹着的美丽星球!近年来是愈来愈不太平,我们放眼世界,地球生存环境对人类似乎并不那么乐观:火山、地震、海啸等地质灾害一个个接踵而至;暴雪、洪涝、干旱、异常气象等自然灾害频发。让我们冷静思考一下,这是大自然的错吗?为何大自然突然变得不再“亲切”这一系列的灾难正是在全球气候变暖的背景下产生的。自上世纪80年代以来,随着人类活动的加剧,向空气中排放的温室气体不断增加,导致全球气候变暖,也让人类面临更加恶劣的生存环境。这一变化得到了人们的高度关注,大家都在力图用各种方法来应对气候变化,而改善我们地球环境的最有效手段就是节能减排,做到低碳生活。
参加志愿活动,充实课外生活尊敬的老师,亲爱的同学们:大家好! 我是xxx,担任校志愿者服务队队长!今天我讲话的题目是《参加志愿活动,充实课外生活》。青年志愿者活动是当代社会主义中国一项十分高尚的事业,体现了中华民族助人为乐和扶贫济困的传统美德,是大有希望的事业。努力进行好这项事业,有助于在全社会树立奉献、友爱、互助、进步的时代新风。我校的志愿者服务队,也已成立快一年了。在这段时间里,服务队进行的志愿活动也颇为精彩。例如,积极响应“零垃圾校园”活动,到漳州港进行“普通话推广”,还有在重阳节到白沙社区慰问老人等。在以后的学习生活中,类似的活动也会越来越多。
参加志愿活动,充实课外生活尊敬的老师,亲爱的同学们:大家好! 我是xxx,担任校志愿者服务队队长!今天我讲话的题目是《参加志愿活动,充实课外生活》。青年志愿者活动是当代社会主义中国一项十分高尚的事业,体现了中华民族助人为乐和扶贫济困的传统美德,是大有希望的事业。努力进行好这项事业,有助于在全社会树立奉献、友爱、互助、进步的时代新风。我校的志愿者服务队,也已成立快一年了。在这段时间里,服务队进行的志愿活动也颇为精彩。例如,积极响应“零垃圾校园”活动,到漳州港进行“普通话推广”,还有在重阳节到白沙社区慰问老人等。在以后的学习生活中,类似的活动也会越来越多。除了这些,我校还有一些固定的服务岗位。例如食堂督导,图书管理员,校风校纪监督岗,橱窗报刊更换等。
写作背景这首诗写于普希金被沙皇流放的日子里,是以赠诗的形式写在他的邻居奥希泊娃的女儿叶甫勃拉克西亚·尼古拉耶夫娜·伏里夫纪念册上的。那里俄国革命正如火如荼,诗人却被迫与世隔绝。在这样的处境下,诗人却没有丧失希望与斗志,他热爱生活,执着地追求理想,相信光明必来,正义必胜。(三)、问题探究1、“假如生活欺骗了你”指的是什么?指在生活中因遭遇艰难困苦甚至不幸而身处逆境。作者写这首诗时正被流放,是自己真实生活的写照。2、诗人在诗中阐明了怎样的人生态度?请结合你感受最深的诗句说说你曾有过的体验。诗中阐明了这样一种积极乐观的人生态度:当生活欺骗了你时,不要悲伤,不要心急;在苦恼的时候要善于忍耐,一切都会过去,我们一定要永葆积极乐观的心态;生活中不可能没有痛苦与悲伤,欢乐不会永远被忧伤所掩盖,快乐的日子终会到来。
今天我讲话的题目是《关注饮食安全,共创健康生活》。常言道:民以食为天,食以安为先。食品安全是生命健康最有力的保证。近日我们有些同学为贪图便宜、方便,或因为挑食,喜欢在路边摊点就餐,殊不知这是在拿健康甚至生命在开玩笑。路边摊点多采用的是“地沟油”,里面包含很多致癌物质。而且一般小贩未做过健康体检,没有卫生许可证,其中有些人可能就是肝炎等病源的携带者和传播者。因此,学校提倡同学们在食堂就餐,或在家吃饭,养成良好的饮食习惯,避免食物中毒事故的发生。同时希望同学们不吃生冷食物,保证营养均衡,把自己的身体吃得棒棒的。
1.从监测的范围、速度,人力和财力的投入等方面看,遥感具有哪些特点?点拨:范围更广、速度更快、需要人力更少 、财力投入少。2.有人说:遥感是人的视力的延伸。你同意这种看法吗?点拨:同意。可以从遥感的定义分析。从某种意义上说,人们“看”的过程就是在遥感,眼睛相当于传感器。课堂小结:遥感技术是国土整治和区域发展研究中应用较广的技术 手段之一,我国在这个领域已经走在了世界的前列。我国的大部分土地已经获得了大比例尺的航空影像资料,成功发射了回收式国土资源卫星,自行研制发射了“风云”卫星。遥感技术为我国自然资源开发与利用提供 了大量的有用的资料,在我国农业估产、灾害监测 、矿产勘察、土地利用、环境管理与城乡规划中起到了非常重要的作用。板书设计§1.2地理信息技术在区域地理环境研究中的应用
(4)假如你是110指挥中心的调度员,描述在接到报警电话到指挥警车前往出事地点的工作程序。点拨:接警→确认出事地点的位置→(在显示各巡警车的地理信息系统中)了解其周围巡警车的位置→分析确定最近(或能最快到达)的巡警车→通知该巡警车。(5)由此例推想,地理信息技术还可以应用于城市管理的哪些部门中?点拨:城市交通组织和管理、商业组织和管理、城市规划、卫生救护、物流等部门,都可利用地理信息技术。【课堂小结】现代地理学中,3S技术学科的发展与应用,日益成为地理学前沿科学研究的重要领域,并成为地理学服务于社会生产的主要途径,现在3S技术已经广泛应用于社会的各个领域。它们三者既有分工又有联系。遥感技术主要用于地理信息数据的获取,全球定位系统主要用于地理信息的空间定位,地理信息系统主要用来对地理信息数据的管理、更新、分析等。
教学重点:1.比较分析地理环境差异对区域发展的影响2.分析区域不同发展阶段地理环境的影响教学难点:1.区域的特征2.以两个区域为例,比较分析地理环境差异对区域发展的影响教具准备:有关挂图等、自制图表等教学方法:比较法、案例分析法、图示法等教学过程:一、区域1.概念:区域是地球表面的空间单位,它是人们在地理差异的基础上,按一定的指标和方法划分出来的。2.特征:(1)区域具有一定的区位特征:不同的区域,自然环境有差异,人类活动也有差异。同一区域,区域内部的特定性质相对一致,如湿润区的多年平均降水量都在800毫米以上。但自然环境对人类活动的影响随着其他条件的变化而不同。(2)具有一定的面积、形状和边界。①有的区域的边界是明 确的,如行政区;②有的区域的边界具有过渡性质,如干湿地区。
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.