首先列表,利用未知数的取值,根据一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0)分别计算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知数的大致取值范围,然后再进一步在这个范围内取值,逐步缩小范围,直到所要求的精确度为止.(2)在估计一元二次方程根的取值范围时,当ax2+bx+c(a≠0)的值由正变负或由负变正时,x的取值范围很重要,因为只有在这个范围内,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板书设计一元二次方程的解的估算,采用“夹逼法”:(1)先根据实际问题确定其解的大致范围;(2)再通过列表,具体计算,进行两边“夹逼”,逐步获得其近似解.“估算”在求解实际生活中一些较为复杂的方程时应用广泛.在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法.教学设计上,强调自主学习,注重合作交流,在探究过程中获得数学活动的经验,提高探究、发现和创新的能力.
3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
(1)填写表格中次品的概率.(2)从这批西装中任选一套是次品的概率是多少?(3)若要销售这批西装2000件,为了方便购买次品西装的顾客前来调换,至少应该进多少件西装?六、课堂小结:尽管随机事件在每次实验中发生与否具有不确定性,但只要保持实验条件不变,那么这一事件出现的频率就会随着实验次数的增大而趋于稳定,这个稳定值就可以作为该事件发生概率的估计值。七、作业:课后练习补充:一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球与10的比值,再把球放回袋中摇匀。不断重复上述过程5次,得到的白求数与10的比值分别为:0.4,0.1,0.2,0.1,0.2。根据上述数据,小亮可估计口袋中大约有 48 个黑球。
三:巩固新知1、判断对错:(1)如果一个菱形的两条对角线相等,那么它一定是正方形. ( )(2)如果一个矩形的两条对角线互相垂直,那么它一定是正方形.( )(3)两条对角线互相垂直平分且相等的四边形,一定是正方形. ( )(4)四条边相等,且有一个角是直角的四边形是正方形. ( )2、已知:点E、F、G、H分别是正方形ABCD四条边上的中点,并且E、F、G、H分别是AB、BC、CD、AD的中点.求证:四边形EFGH是正方形.3、自己完成课本P23的议一议四、小结1.正方形的判定方法.2.了解正方形、矩形、菱形之间的联系与区别,体验事物之间是相互联系但又有区别的辩证唯物主义观点.3.本节的收获与疑惑.
由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P(两次摸出的球都是白球)=26=13;(2)列表如下:由上表可知,共有9种结果,且每种结果是等可能的,其中两次摸出白球的结果有4种,所以P(两次摸出的球都是白球)=49.方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.三、板书设计用树状图或表格求概率画树状图法列表法通过与学生现实生活相联系的游戏为载体,培养学生建立概率模型的思想意识.在活动中进一步发展学生的合作交流意识,提高学生对所研究问题的反思和拓展的能力,逐步形成良好的反思意识.鼓励学生思维的多样性,发展学生的创新意识.
∴OE=OF=OG=OH.又∵EG⊥FH,∴四边形EFGH为菱形.∵EO+GO=FO+HO,即EG=HF,∴四边形EFGH为正方形.方法总结:对角线互相垂直平分且相等的四边形是正方形.探究点二:正方形、菱形、矩形与平行四边形之间的关系填空:(1)对角线________________的四边形是矩形;(2)对角线____________的平行四边形是矩形;(3)对角线__________的平行四边形是正方形;(4)对角线________________的矩形是正方形;(5)对角线________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法总结:从对角线上分析特殊四边形之间的关系应充分考虑特殊四边形的性质与判别,防止混淆.菱形、矩形、正方形都是平行四边形,且是特殊的平行四边形,特殊之处在于:矩形是有一个角为直角的平行四边形;菱形是有一组邻边相等的平行四边形;而正方形是兼具两者特性的更特殊的平行四边形,它既是矩形,又是菱形.
1)正方形的边长为4cm,则周长为( ),面积为( ) ,对角线长为( );2))正方形ABCD中,对角线AC、BD交于O点,AC=4 cm,则正方形的边长为( ), 周长为( ),面积为( )3)在正方形ABCD中,AB=12 cm,对角线AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性质是( ) A、四个角相等 B、对角线互相垂直平分 C、对角互补 D、对角线相等. 5)、正方形具有而菱形不一定具有的性质( ) A、四条边相等 B对角线互相垂直平分 C对角线平分一组对角 D对角线相等. 6)、正方形对角线长6,则它的面积为_________ ,周长为________. 7)、顺次连接正方形各边中点的小正方形的面积是原正方形面积的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例讲解:1、(课本P21例1)学生自己阅读课本内容、注意证明过程的书写2、 如图,分别以△ABC的边AB,AC为一边向外画正方形AEDB和正方形ACFG,连接CE,BG.求证:BG=CE
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
三、课堂检测:(一)、判断题(是一无二次方程的在括号内划“√”,不是一元二次方程的,在括号内划“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a为常数) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空题.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次项是__________,一次项是__________,常数项是__________.2.如果方程ax2+5=(x+2)(x-1)是关于x的一元二次方程,则a__________.3.关于x的方程(m-4)x2+(m+4)x+2m+3=0,当m__________时,是一元二次方程,当m__________时,是一元一次方程。四、学习体会:五、课后作业
方法总结:平行线与角的大小关系、直线的位置关系是紧密联系在一起的.由两直线平行的位置关系得到两个相关角的数量关系,从而得到相应角的度数.探究点四:平行于同一条直线的两直线平行如图所示,AB∥CD.求证:∠B+∠BED+∠D=360°.解析:证明本题的关键是如何使平行线与要证的角发生联系,显然需作出辅助线,沟通已知和结论.已知AB∥CD,但没有一条直线既与AB相交,又与CD相交,所以需要作辅助线构造同位角、内错角或同旁内角,但是又要保证原有条件和结论的完整性,所以需要过点E作AB的平行线.证明:如图所示,过点E作EF∥AB,则有∠B+∠BEF=180°(两直线平行,同旁内角互补).又∵AB∥CD(已知),∴EF∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∴∠FED+∠D=180°(两直线平行,同旁内角互补).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性质),即∠B+∠BED+∠D=360°.方法总结:过一点作一条直线或线段的平行线是我们常作的辅助线.
小刘同学用10元钱购买两种不同的贺卡共8张,单价分别是1元与2元.设1元的贺卡为x张,2元的贺卡为y张,那么x,y所适合的一个方程组是()A.x+y2=10,x+y=8 B.x2+y10=8,x+2y=10C.x+y=10,x+2y=8 D.x+y=8,x+2y=10解析:根据题意可得到两个相等关系:(1)1元贺卡张数+2元贺卡张数=8(张);(2)1元贺卡钱数+2元贺卡钱数=10(元).设1元的贺卡为x张,2元的贺卡为y张,可列方程组为x+y=8,x+2y=10.故选D.方法总结:要判断哪个方程组符合题意,可从题目中找出两个相等关系,然后代入未知数,即可得到方程组,进而得到正确答案.三、板书设计二元一次方程组二元一次方程及其解的定义二元一次方程组及其解的定义列二元一次方程组通过自主探究和合作交流,建立二元一次方程的数学模型,学会逐步掌握基本的数学知识和方法,形成良好的数学思维习惯和应用意识,提高解决问题的能力,感受数学创造的乐趣,增进学好数学的信心,增加对数学较全面的体验和理解.
探究点二:三角形内角和定理的推论2如图,P是△ABC内的一点,求证:∠BPC>∠A.解析:由题意无法直接得出∠BPC>∠A,延长BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得证.证明:延长BP交AC于D,∵∠BPC是△ABC的外角(外角定义),∴∠BPC>∠PDC(三角形的一个外角大于任何一个和它不相邻的内角).同理可证:∠PDC>∠A,∴∠BPC>∠A.方法总结:利用推论2证明角的大小时,两个角应是同一个三角形的内角和外角.若不是,就需借助中间量转化求证.三、板书设计三角形的外角外角:三角形的一边与另一边的延长线所组成的 角,叫做三角形的外角推论1:三角形的一个外角等于和它不相邻的两 个内角的和推论2:三角形的一个外角大于任何一个和它不 相邻的内角利用已经学过的知识来推导出新的定理以及运用新的定理解决相关问题,进一步熟悉和掌握证明的步骤、格式、方法、技巧.进一步培养学生的逻辑思维能力和推理能力,特别是培养有条理的想象和探索能力,从而做到强化基础,激发学习兴趣.
探究点二:勾股定理的简单运用如图,高速公路的同侧有A,B两个村庄,它们到高速公路所在直线MN的距离分别为AA1=2km,BB1=4km,A1B1=8km.现要在高速公路上A1、B1之间设一个出口P,使A,B两个村庄到P的距离之和最短,求这个最短距离和.解析:运用“两点之间线段最短”先确定出P点在A1B1上的位置,再利用勾股定理求出AP+BP的长.解:作点B关于MN的对称点B′,连接AB′,交A1B1于P点,连BP.则AP+BP=AP+PB′=AB′,易知P点即为到点A,B距离之和最短的点.过点A作AE⊥BB′于点E,则AE=A1B1=8km,B′E=AA1+BB1=2+4=6(km).由勾股定理,得B′A2=AE2+B′E2=82+62,∴AB′=10(km).即AP+BP=AB′=10km,故出口P到A,B两村庄的最短距离和是10km.方法总结:解这类题的关键在于运用几何知识正确找到符合条件的P点的位置,会构造Rt△AB′E.三、板书设计勾股定理验证拼图法面积法简单应用通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,学会勾股定理的应用并逐步培养学生应用数学解决实际问题的能力,为后面的学习打下基础.
XX年小学新学期开学国旗下讲话尊敬的老师们、亲爱的同学们:大家好!在新学期的开学升旗仪式上,首先请允许我向刚安排到我们学校的新老师、新同学表示最热烈的欢迎!过去的一学年,我们学校在全体师生的共同努力下,学校各方面的工作稳步前进,教育教学方面取得了优异成绩,学校的面貌焕然一新。刚刚过去的这个暑假,虽然酷热,但确实令人感到愉快、难忘而有意义。同学们在假期中合理的休息、愉快的活动、刻苦的学习,努力做到寒假中学校的要求;在老师和家长的帮助下,大家踊跃开展丰富多彩的有益的活动;到外地开拓视野,增长知识;还不断的学习课外书籍等等,这一切真让人感到高兴!现在,同学们面对徐徐升起的五星红旗,你们在想什么呢?作为一个小学生,如何使自己成为家庭的好孩子、学校的好学生、社会的好少年呢?将来如何更好地适应新形势的需求,把自己塑造成为符合时代发展的、能为社会作出贡献的合格人才呢?在这里,我代表学校向同学们提出新学期的希望和要求:
1、继续抓好常规教研,每次教研要有计划、有主题、有目标,谈到的问题要解决,讨论要有结果,从而使活动效果最大化。 2、以新课标测试的形促进老师们新课标理论学习,讨论对新课标的理解和运用程度,不断讨论和摸索在课堂教学中如何更大程度地渗透新课标的理念。 3、聚焦课堂,加强教学展示和相互学习。继续开展研究课、汇报课、展示课等活动,突出新课标理念、以创设情景,主动参与的课堂教学设计为研究重点,进行“研、讲、评、议”一条龙教研活动,充分体现集体智慧,集思广益,提高教师的授课质量,提高课堂效率,严把“有效教学”关,打造高效课堂。
XX年12月份小学国旗下讲话 大家早上好!今天我们六(4)班国旗下讲话的主题是《讲文明、守礼仪,做一名彬彬有礼的小学生》 礼仪是校园文化、班级文化的重要表现形式,具有良好礼仪习惯的人首先给人以“赏心悦目”之感,能调节人与人之间的关系。在学校,礼仪能使老师与学生、同学与同学之间的关系更加和谐、融洽、友善,使校园的文明氛围更浓。礼仪无处不在,它可以表现出一个人的道德修养,可以增进人与人之间的友谊,作用太多太多。那么怎样才能使小学生礼仪洋溢在我们美丽的校园里呢?首先要着装得体,符合小学生的身份,因为仪表、仪容、仪态可以让人一看便知道你的修养。升旗仪式,最为庄严。国旗凝聚着无数先烈的鲜血,国旗下的我们要严肃认真、精神饱满、高唱国歌,不负“礼仪之邦”这个美誉。课堂礼仪对老师的教学影响很大,它直接关系着一个班的荣誉与凝聚力,体现这个班的班风班貌。校园礼仪范围就更广,课余时间,不随地吐痰、不乱扔纸屑、不拿粉笔头玩、上下楼梯一律右行、见到老师和客人用普通话主动问好。我们还应该爱护花草树木和一切设施,爱护清洁卫生,服从老师管理和接受同学的批评劝阻。受到老师和同学的帮助,诚恳地说声谢谢。
一、活动目标自信是成功的必要条件,是成功的源泉。相信自己行,是一种信念。自信是人对自身力量的一种确信,深信自己一定能做成某件事,实现所追求的目标。本次班会以自信为主题,提升同学们在日常生活和学习中的自信心。二、活动准备全班同学预先学会唱《明天会更好》这首歌两位同学准备好小品,电脑,vcd,活动道具等三、活动过程:1.班主任致辞:我们班是一个团结友爱,上进的班级,同学之间的感情深厚。为了我们在以后的日子里更好的学习,深刻了解自信重要性,我们班特地搞了这次的主题班会。下面宣布主题班会开始。2.男女主持人发言,宣布主题班会开始。3.全班合唱明天会更好。(充分利用电脑,vcd带唱)4.通过演小品。分清自信,自卑,自大,充分说明自信的重要。5、举例说明怎样建立和加强自己的自信心。
1、以备课组为中心开展教学研究活动,加强教师间的交流与合作,共同努力,共同提高。充分发挥各年级备课组的作用,做到每周定时、定地点团体备课一次,执行签到制度。备课有计划,有资料,有中心发言人。备课组讨论教材,切磋教法,研究学法,探讨教学重、难点,及时解决教学中遇到的的问题等,做好记录,使备课组活动真正落到实处。
老师们、同学们: 你们好!新年的钟声还萦绕在我们的耳畔,新春的脚步随着我们又走进了新的一年。迎着美丽的朝霞,伴着一声声亲切的问候,今天同学们又回到快乐的校园。看到大家抖擞的精神和张张笑脸,我相信大家都度过了一个温馨、祥和、愉快的新年。老师们,同学们,元旦标志着华夏神州又增添了一道年轮,标志着时代的航船乘风破浪,我们学校和伟大祖国一样又迎来了充满希望的一年。元旦的“元”是开始,第一之意;“旦”是早晨,一天之意。“元旦”就是一年的开始,一年的第一天。从字面上看,“旦”字下面的一横代表着波涛澎湃的海面,一轮红日正从海上喷薄而出放射着灿烂辉煌的光芒,这个象形字生动地反映了旭日东升的形象。把“元旦”合在一起,就是要人们以蓬勃的朝气和奋发的斗志来迎接崭新的一年。在过去的一学期里,同学们在老师的悉心教导下,努力学习,刻苦钻研,认真锻炼,在德、智、体、美、劳几方面都得到了发展。在我们学校,很多老师,很多同学在各个方面都取得了优异的成绩,不管是升级统考,还是红歌会表演,为学校争得了荣誉。
XX年小学国庆节国旗下讲话稿有哪些范文?以下是小编收集的关于《XX年小学国庆节国旗下讲话稿》的范文,仅供大家阅读参考!亲爱的老师、同学们:大家好!当我们站在这里,唱着雄壮激昂的国歌,目睹着五星红旗冉冉升起,不禁为身为中华儿女而感到自豪。62年前的10月1日,也就是1949年10月1日是一个永载历史的日子。一面五星红旗,在天安门城楼上高高飘起。在这面国旗上,凝聚了千千万万革命者的愿望、信仰和追求,倾注了中国亿万人民对祖国、对民族的深情挚爱。 伟大的祖国,我们共同的母亲!看,全中国正以春天般明媚的心态为您庆祝62周岁寿诞!在这里,我要以满腔真诚为您献上火红的玫瑰,让每一朵玫瑰承载您的历史与记忆,让每一朵玫瑰珍藏您的美丽与笑容。 曾经,您好似一头睡狮。在被欺侮的岁月里,沉默了多少年。您经历了太多痛苦的洗礼,也经历了奋斗的欣慰;经历了成功的喜悦,也经历了等待的寂寞。您的一颦一笑,就是一首《义勇军进行曲》,“起来——不愿做奴隶的人们——用我们的鲜血筑成我们新的长城——”一声春雷,为您展开了新篇章。以前的一切悲哀被击得遍体鳞伤。您终于醒了,这一醒便注定了千年的美丽! 而今,您的儿女风华正茂,挥出大手笔。您的巨变让世人刮目相看,世界银行《2020年的中国》研究报告中这样夸您说“中国只用了一代人的时间,就取得了其他国家用几个世纪才能取得的成就!”