设计意图:在游戏中巩固策略,提高学生学习兴趣,缓解学习疲劳。这个游戏的“揭密”过程关注方法的多样化,让学生体会列方程的策略和倒推策略之间的联系,把新旧知识进行了有机地融合,以培养学生思维的灵活性和发散性。四、课堂小结 提升策略提问学生:这节课你学会了应用什么策略解决实际问题?什么类型的题目适合用今天的策略解答?用这样的策略解决实际问题要注意什么?你还有别的收获吗?设计意图:突出主题,让学生总结本课的学习内容和学习重点;同时关注学生的个性发展,引导学生进行个性化的总结,体现不同层次的学生对课堂教学的领悟程度。五、课堂作业列方程解决实际问题,完成练习一4、5两题。设计意图:及时反馈学生学习情况,为后续教学研究收集宝贵的教学信息。
一、本节内容在教材中所处的地位和作用:本单元是在学生理解了四则运算的意义和学会用字母表示数的基础上进行学习的。由学习用字母表示数到学习方程,是学生又一次接触初步的代数思想,这既是对所学四则运算意义和数量关系的进一步深化,又是为今后学习代数知识作准备,在知识衔接上具有重要作用。而这一节恰好在这一单元之中起着承上启下的作用。二、 教学目标:1、在具体的活动中,体验和理解等式的性质,会用等式的性质解简单的方程。2、结合有关黔金丝猴的数量情况,对学生进行保护珍稀动物方面的教育。3、培养学生的观察、讨论、推理、合作交流能力。三、重点难点:重点:解简单方程、用方程解决问题。因为方程知识与现实生活联系比较紧密,同时是今后学习代数知识的基础,所以把解简单方程作为本节重点。
(3)补充题:2008年的奥运会在北京举行,小明的爸爸决定去北京观看一些比赛项目,为中国健儿加油。如果坐汽车,每小时行使60千米,4小时可以多少千米?如果坐火车,火车的速度是汽车的2倍,同样的时间可以行使多少千米?这题的第2个问题中蕴含着两种解题思路,让学生说一说、比一比。一种是根据速度×时间=路程的数量关系,先算出变化了的那个因数是多少,再求积。另一种是根据一个因数不变,另一个因数乘以几,原来的积也乘以几解决问题。两种方法得出的积相同,使学生体会积的变化规律是客观存在的普遍规律。『设计理念』在层次分明,形式多样的练习中,通过让学生想一想、填一填、说一说,使学生在规律的应用中逐步加深对积的变化规律的理解。
这样让学生的想象建立在一定的表象基础上,不是凭空去想像。学生经历了猜测、分析推理,最后再实物验证的过程。同时,发展了学生的空间想像力和思维能力。)我继续追问:你们能不能想出一个好办法让大家知道这究竟是什么物体吗?这一富有挑战性的问题,激发了学生积极主动的去思维。从而探究出解决问题的方法是还要知道另一个面或两个面的形状。2、有了练习八第2题做铺垫,再小组合作完成39页“做一做”就很容易了,这样也体现了知识出现的层次性。)为了帮助学生把零散的知识进行归纳梳理,同时培养学生从不同角度欣赏他人的良好心态。接下来我对应用部分进行了小结:我们通过观察发现从同一个方向观察不同形状的立体图形,得到的形状也可能是相同的。因此,我们不能只根据一个方向看到的形状就确定是什么立体图形,只有把不同方向看到的形状进行综合,才能进行正确的判断。我们要全面了解一件事物或一个人也要懂得从不同的角度去观察、思考,不能片面的看待。
《数学课程标准》中指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。只是在学生需要时给予恰当的帮助。”通过不同形式的习题帮助学生掌握新知。进一步突出本节课的重难点。尤其是创新题,1、编两个不同的方程,使方程的解都是ⅹ=6,2、在□中填入合适的数,使等式成立。具有一定的挑战性.只有当自己的观点与集体不一致时,才会产生要证实自己思想的欲望,从而激活学生思维的火花.但是提出挑战并不意味着要难倒学生,而是要激励学生在学习的过程中不断地去获得成功的体验.学生是学习的主体,只有通过学生自身的”再创造”活动,才能纳入其认知结构中,才可能成为有效的知识. 在教与学的活动中,有老师的组织、参与和指导,有同伴的合作、交流与探索。 “授之以鱼,不如授之以渔。”虽只有一字只差,却是两种截然不同的教育理念。我选择后者。这样既培养了孩子们分析、推理能力和思维的灵活性,又为学生的新知建构拓展出更大的空间!
这节课的教学内容是九年义务教育六年制小学教科书数学第九册,P117——P119页复习、例1、例2、解方程的一般步骤、想一想、做一做及P120页T1-4。教学目的有以下三点:1、使学生掌握列方程解两步应用题的方法。2、总结列方程解应用题的一般步骤。3、培养学生分析数量关系的能力,提高学生在列方程解应用题时分析等理关系的能力。教学重点:分析应用题里的等量关系,会列方程解应用题。教学难点:分析应用题里的等量关系。教具准备:小黑板、写好题目的纸条等。这节课在学生已有的解方程、分析应用题数量关系等知识的基础上进行教学,使学生掌握列方程解应用题的方法,为以后学习更深入的知识打下基础,同时培养学生积极思考问题,热爱自然科学的品质。
(1)本周哪一天河流水位最高,哪一天河流水位最低,它们位于警戒水位之上还是之下,与警戒水位的距离分别是多少?(2)与上周末相比,本周末河流的水位是上升还是下降了?解析:(1)先规定其中一个为正,则另一个就用负表示.理解表中的正负号表示的含义,根据条件计算出每天的水位即可求解;(2)只要观察星期日的水位是正负即可.解:(1)前两天的水位是上升的,第1天的水位是+0.20米;第2天的水位是+0.20+0.81=+1.01米;第3天的水位是+1.01-0.35=+0.66米;第4天的水位是+0.66+0.13=+0.79米;第5天的水位是0.79+0.28=+1.07米;第6天的水位是1.07-0.36=+0.71米;第7天的水位是0.71-0.01=+0.7米;则水位最低的是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米,则本周末河流的水位上升了0.7米.方法总结:解此题的关键是分析题意列出算式,用的数学思想是转化思想,即把实际问题转化成数学问题.探究点二:有理数的加减混合运算在生活中的其他应用
方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
提示:要学会在图表中用含未知数的代数式表示出要分析的量;然后利用相等关系列方程。2.Flash动画,情景再现.3.学法小结:(1)对较复杂的问题可以通过列表格的方法理清题中的未知量、已知量以及等量关系,这样,条理比较清楚.(2)借助方程组解决实际问题.设计意图:生动的情景引入,意在激发学生的学习兴趣;利用图表帮助分析使条理清楚,降低思维难度,并使列方程解决问题的过程更加清晰;学法小结,着重强调分析方法,养成归纳小结的良好习惯。实际效果:动画引入,使数字问题变的更有趣,确实有效地激发了学生的兴趣,学生参与热情很高;借助图表分析,有效地克服了难点,学生基本都能借助图表分析,在老师的引导下列出方程组。4.变式训练师生共同研究下题:有一个三位数,现将最左边的数字移到最右边,则比原来的数小45;又知百位数字的9倍比由十位数字和个位数字组成的两位数小3,试求原来的3位数.
A、B两码头相距140km,一艘轮船在其间航行,顺水航行用了7h,逆水航行用了10h,求这艘轮船在静水中的速度和水流速度.解析:设这艘轮船在静水中的速度为xkm/h,水流速度为ykm/h,列表如下,路程 速度 时间顺流 140km (x+y)km/h 7h逆流 140km (x-y)km/h 10h解:设这艘轮船在静水中的速度为xkm/h,水流速度为ykm/h.由题意,得7(x+y)=140,10(x-y)=140.解得x=17,y=3.答:这艘轮船在静水中的速度为17km/h,水流速度为3km/h.方法总结:本题关键是找到各速度之间的关系,顺速=静速+水速,逆速=静速-水速;再结合公式“路程=速度×时间”列方程组.三、板书设计“里程碑上的数”问题数字问题行程问题数学思想方法是数学学习的灵魂.教学中注意关注蕴含其中的数学思想方法(如化归方法),介绍化归思想及其运用,既可提高学生的学习兴趣,开阔视野,同时也提高学生对数学思想的认识,提升解题能力.
活动目的:(1)通过小组讨论活动,让学生理解坐标系的特点,并能应用特点解决问题。(2)培养学生逆向思维的习惯。(3)在小组讨论中培养学生勇于探索,团结协作的精神。第四环节:练习随堂练习 (体现建立直角坐标系的多样性)(补充)某地为了发展城市群,在现有的四个中小城市A,B,C,D附近新建机场E,试建立适当的直角坐标系,并写出各点的坐标。第五环节:小结内容:小结本节课自己的收获和进步,从知识和能力上两个方面总结,老师予于肯定和鼓励。目的:鼓励学生大胆发言,敢于表达自己的观点,同时学生之间可以相互学习,共同提高,老师给予肯定和鼓励,激发学生的学习热情。第六环节:布置作业A类:课本习题5.5。B类:完成A类同时,补充:(1)已知点A到x轴、y轴的距离均为4,求A点坐标;(2)已知x轴上一点A(3,0),B(3,b),且AB=5,求b的值。
解:(1)∵点(1,5)在反比例函数y=kx的图象上,∴5=k1,即k=5,∴反比例函数的解析式为y=5x.又∵点(1,5)在一次函数y=3x+m的图象上,∴5=3+m,即m=2,∴一次函数的解析式为y=3x+2;(2)由题意,联立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴这两个函数图象的另一个交点的坐标为(-53,-3).三、板书设计反比例函数的图象形状:双曲线位置当k>0时,两支曲线分别位于 第一、三象限内当k<0时,两支曲线分别位于 第二、四象限内画法:列表、描点、连线(描点法)通过学生自己动手列表、描点、连线,提高学生的作图能力.理解函数的三种表示方法及相互转换,对函数进行认识上的整合,逐步明确研究函数的一般要求.反比例函数的图象具体展现了反比例函数的整体直观形象,为学生探索反比例函数的性质提供了思维活动的空间.
因为反比例函数的图象经过点A(1.5,400),所以有k=600.所以反比例函数的关系式为p=600S(S>0);(2)当S=0.2时,p=6000.2=3000,即压强是3000Pa;(3)由题意知600S≤6000,所以S≥0.1,即木板面积至少要有0.1m2.方法总结:本题渗透了物理学中压强、压力与受力面积之间的关系p= ,当压力F一定时,p与S成反比例.另外,利用反比例函数的知识解决实际问题时,要善于发现实际问题中变量之间的关系,从而进一步建立反比例函数模型.三、板书设计反比例函数的应用实际问题与反比例函数反比例函数与其他学科知识的综合经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程,提高运用代数方法解决问题的能力,体会数学与现实生活的紧密联系,增强应用意识.通过反比例函数在其他学科中的运用,体验学科整合思想.
补充题:为了预防“非典”,某学校对教室采用药熏消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如右图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:(1)药物燃烧时,y关于x的函数关系式为 ,自变量x的取值范围为 ;药物燃烧后,y关于x的函数关系式为 .(2)研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)y= x, 010,即空气中的含药量不低于3毫克/m3的持续时间为12分钟,大于10分钟的有效消毒时间.
观察 和 的图象,它们有什么相同点和不同点?学生小组讨论,弄清上述两个图象的异同点。交流讨论反比 例函数图象是中心对称图形吗?如果是,请找出对称中心.反比例函数图象是轴对称图形吗?如果是,请指出它的对称轴.二、随堂练习课本随堂练习 [探索与交流]对于函数 , 两支曲线分别位于哪个象限内?对于函数 ,两支曲线又分别位于哪个象限内?怎样区别这两个函数的图象。学生分四人小组全班探索。 三、课堂总结在进行函数的列表,描点作图的活动中,就已经渗透了反比例函数图象的特征,因此在作图象的过程中,大家要进行积极的探索 。另外,(1)反比例函数的图象是非线性的,它的图象是双曲线;(2)反比例 函数y= 的图像,当k>0时,它的图像位于一、三象限内,当k<0时,它的图像位于二、四象限内;(3)反比例函数既是中心对称图形,又是轴对称图形。
亿以内数的认识,是在学生认识和掌握万以内数的基础上学习的。生活中大数广泛存在,对大数的认识是万以内数的认识的拓展,也是学生必须掌握的最基本的数学基础之一。本册教材先教学亿以内数的读法和写法,再教学亿以上数的读法和写法,并对数的理论进行整理,在两部分认识数教学中间安排十进制计数法,知道数位,数级,对亿以内数的认识的内容进行归纳整理,也对亿以上数的认识起承上启下作用。加强了数学与现实生活的联系,同时对学生进行综合知识的渗透,从万以内数的认识到亿以内数的认识是学生数概念的又一次扩充。教材提供了较丰富的素材,让学生感受大数,不仅为学生认识大数提供丰富的内容,也为对学生进行国情教育提供了好素材。突出数概念教学,从数学的高度把握十进制原理,培养数感。教学内容的呈现给了学生自主探索和自主交流的空间,也为教师组织教学提供了思路,如:读、写数的法则教材上不给出现成的结论,而是让学生通探究自主过讨论得到。
教学目标:1.会画直棱柱(仅限于直三棱柱和直四棱柱)的三种视图,体会这几种几何体与其视图之间的相互转化。2. 会根据三视图描述原几何体。教学重点:掌握直棱柱的三视图的画法。能根据三视图描述原几何体。教学难点:几何体与视图之间的相互转化。培养空间想像观念。课型:新授课教学方法:观察实践法一、实物观察、空间想像观察:请同学们拿出事先准备好的直三棱柱、直四棱柱,根据你所摆放的位置经过 想像,再抽象出这两个直棱柱的主视图,左视图和俯视图。绘制:请你将抽象出来的三种视图画出来,并与同伴交流。比较:小亮画出了其中一个几何体的主视图、左视图和俯视图,你认为他画的对不对?谈谈你的看法。拓展:当你手中的两个直棱柱摆放的角度变化时,它们的三种视图是否会随之改变?试一试。
教学目标:1.经历由实物抽象出几何体的过程,进一步发展空间观念。2.会画圆柱、圆锥、球的三视图,体会这几种几何体与其视图之间的相互转化。3.会根据三视图描述原几何体。教学重点:掌握部分几何体的三视图的画法,能根据三视图描述原几何体。教学难点:几何体与视图之间的相互转化。培养空间想像观念。课型:新授课教学方法:观察实践法教学过程设计一、实物观察、空间想像设置:学生利用准备好的大小相同的正方形方块,搭建一个立体图形,让同学们画出三视图。而后,再要求学生利用手中12块正方形的方块实物,搭建2个立体图形,并画出它们的三视图。学生分小组合作交流、观察、作图。议一议1.图5-14中物体的形状分别可以看成什么样的几何体?从正面、侧面、上面看这些几何体,它们的形状各是什么样的?2.在图5-15中找出图5-14中各物体的主视图。3.图5-14中各物体的左视图是什么?俯视图呢?