提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

离职保密协议

  • 高教版中职数学基础模块下册:8.3《两条直线的位置关系》教案设计

    教 学 过 程教师 行为学生 行为教学 意图 *揭示课题 8.3 两条直线的位置关系(二) *创设情境 兴趣导入 【问题】 平面内两条既不重合又不平行的直线肯定相交.如何求交点的坐标呢? 图8-12 介绍 质疑 引导 分析 了解 思考 启发 学生思考 *动脑思考 探索新知 如图8-12所示,两条相交直线的交点,既在上,又在上.所以的坐标是两条直线的方程的公共解.因此解两条直线的方程所组成的方程组,就可以得到两条直线交点的坐标. 观察图8-13,直线、相交于点P,如果不研究终边相同的角,共形成四个正角,分别为、、、,其中与,与为对顶角,而且. 图8-13 我们把两条直线相交所成的最小正角叫做这两条直线的夹角,记作. 规定,当两条直线平行或重合时,两条直线的夹角为零角,因此,两条直线夹角的取值范围为. 显然,在图8-13中,(或)是直线、的夹角,即. 当直线与直线的夹角为直角时称直线与直线垂直,记做.观察图8-14,显然,平行于轴的直线与平行于轴的直线垂直,即斜率为零的直线与斜率不存在的直线垂直. 图8-14 讲解 说明 讲解 说明 引领 分析 仔细 分析 讲解 关键 词语 思考 思考 理解 思考 理解 记忆 带领 学生 分析 带领 学生 分析 引导 式启 发学 生得 出结 果

  • 【高教版】中职数学拓展模块:1.3《正弦定理与余弦定理》教案设计

    教 学 过 程教师 行为学生 行为教学 意图 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 在实际问题中,经常需要计算高度、长度、距离和角的大小,这类问题中有许多与三角形有关,可以归结为解三角形问题. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点*巩固知识 典型例题 例6 一艘船以每小时36海里的速度向正北方向航行(如图1-9).在A处观察到灯塔C在船的北偏东方向,小时后船行驶到B处,此时灯塔C在船的北偏东方向,求B处和灯塔C的距离(精确到0.1海里). 图1-9 A 解因为∠NBC=,A=,所以.由题意知 (海里). 由正弦定理得 (海里). 答:B处离灯塔约为海里. 例7 修筑道路需挖掘隧道,在山的两侧是隧道口A和(图1-10),在平地上选择适合测量的点C,如果,m,m,试计算隧道AB的长度(精确到m). 图1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的长度约为409m. 例8 三个力作用于一点O(如图1-11)并且处于平衡状态,已知的大小分别为100N,120N,的夹角是60°,求F的大小(精确到1N)和方向. 图1-11 解 由向量加法的平行四边形法则知,向量表示F1,F2的合力F合,由力的平衡原理知,F应在的反向延长线上,且大小与F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F与F1间的夹角是180°–33°=147°. 答:F约为191N,F与F合的方向相反,且与F1的夹角约为147°. 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点

  • 【高教版】中职数学拓展模块:1.2《正弦型函数》教学设计

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.2正弦型函数. *创设情境 兴趣导入 与正弦函数图像的做法类似,可以用“五点法”作出正弦型函数的图像.正弦型函数的图像叫做正弦型曲线. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 5*巩固知识 典型例题 例3 作出函数在一个周期内的简图. 分析 函数与函数的周期都是,最大值都是2,最小值都是-2. 解 为求出图像上五个关键点的横坐标,分别令,,,,,求出对应的值与函数的值,列表1-1如下: 表 001000200 以表中每组的值为坐标,描出对应五个关键点(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲线联结各点,得到函数在一个周期内的图像(如图). 图 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点 15

  • 【高教版】中职数学拓展模块:1.3《正弦定理与余弦定理》教案

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 我们知道,在直角三角形(如图)中,,,即 ,, 由于,所以,于是 . 图1-6 所以 . 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 10*动脑思考 探索新知 在任意三角形中,是否也存在类似的数量关系呢? c 图1-7 当三角形为钝角三角形时,不妨设角为钝角,如图所示,以为原点,以射线的方向为轴正方向,建立直角坐标系,则 两边取与单位向量的数量积,得 由于设与角A,B,C相对应的边长分别为a,b,c,故 即 所以 同理可得 即 当三角形为锐角三角形时,同样可以得到这个结论.于是得到正弦定理: 在三角形中,各边与它所对的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列问题: (1)已知三角形的两个角和任意一边,求其他两边和一角. (2)已知三角形的两边和其中一边所对角,求其他两角和一边. 详细分析讲解 总结 归纳 详细分析讲解 思考 理解 记忆 理解 记忆 带领 学生 总结 20

  • 【高教版】中职数学拓展模块:1.3《正弦定理与余弦定理》教学设计

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 在实际问题中,经常需要计算高度、长度、距离和角的大小,这类问题中有许多与三角形有关,可以归结为解三角形问题,经常需要应用正弦定理或余弦定理. 介绍 播放 课件 了解 观看 课件 学生自然的走向知识点 0 5*巩固知识 典型例题 例6一艘船以每小时36海里的速度向正北方向航行(如图1-14).在A处观察灯塔C在船的北偏东30°,0.5小时后船行驶到B处,再观察灯塔C在船的北偏东45°,求B处和灯塔C的距离(精确到0.1海里). 解 因为∠NBC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B处离灯塔约为34.8海里. 例7 修筑道路需挖掘隧道,在山的两侧是隧道口A和B(图1-15),在平地上选择适合测量的点C,如果C=60°,AB = 350m,BC = 450m,试计算隧道AB的长度(精确到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的长度约为409m. 图1-15 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点 40

  • 【高教版】中职数学拓展模块:3.1《排列与组合》优秀教学设计

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 3.1 排列与组合. *创设情境 兴趣导入 基础模块中,曾经学习了两个计数原理.大家知道: (1)如果完成一件事,有N类方式.第一类方式有k1种方法,第二类方式有k2种方法,……,第n类方式有kn种方法,那么完成这件事的方法共有 = + +…+(种). (3.1) (2)如果完成一件事,需要分成N个步骤.完成第1个步骤有k1种方法,完成第2个步骤有k2种方法,……,完成第n个步骤有kn种方法,并且只有这n个步骤都完成后,这件事才能完成,那么完成这件事的方法共有 = · ·…·(种). (3.2) 下面看一个问题: 在北京、重庆、上海3个民航站之间的直达航线,需要准备多少种不同的机票? 这个问题就是从北京、重庆、上海3个民航站中,每次取出2个站,按照起点在前,终点在后的顺序排列,求不同的排列方法的总数. 首先确定机票的起点,从3个民航站中任意选取1个,有3种不同的方法;然后确定机票的终点,从剩余的2个民航站中任意选取1个,有2种不同的方法.根据分步计数原理,共有3×2=6种不同的方法,即需要准备6种不同的飞机票: 北京→重庆,北京→上海,重庆→北京,重庆→上海,上海→北京,上海→重庆. 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 15*动脑思考 探索新知 我们将被取的对象(如上面问题中的民航站)叫做元素,上面的问题就是:从3个不同元素中,任取2个,按照一定的顺序排成一列,可以得到多少种不同的排列. 一般地,从n个不同元素中,任取m (m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,时叫做选排列,时叫做全排列. 总结 归纳 分析 关键 词语 思考 理解 记忆 引导学生发现解决问题方法 20

  • 【高教版】中职数学拓展模块:3.2《二项式定理》教学设计

    一、定义:  ,这一公式表示的定理叫做二项式定理,其中公式右边的多项式叫做的二项展开式;上述二项展开式中各项的系数 叫做二项式系数,第项叫做二项展开式的通项,用表示;叫做二项展开式的通项公式.二、二项展开式的特点与功能1. 二项展开式的特点项数:二项展开式共(二项式的指数+1)项;指数:二项展开式各项的第一字母依次降幂(其幂指数等于相应二项式系数的下标与上标的差),第二字母依次升幂(其幂指数等于二项式系数的上标),并且每一项中两个字母的系数之和均等于二项式的指数;系数:各项的二项式系数下标等于二项式指数;上标等于该项的项数减去1(或等于第二字母的幂指数;2. 二项展开式的功能注意到二项展开式的各项均含有不同的组合数,若赋予a,b不同的取值,则二项式展开式演变成一个组合恒等式.因此,揭示二项式定理的恒等式为组合恒等式的“母函数”,它是解决组合多项式问题的原始依据.又注意到在的二项展开式中,若将各项中组合数以外的因子视为这一组合数的系数,则易见展开式中各组合数的系数依次成等比数列.因此,解决组合数的系数依次成等比数列的求值或证明问题,二项式公式也是不可或缺的理论依据.

  • 高教版中职数学基础模块下册:10.1《计数原理》教学设计

    授课 日期 班级16高造价 课题: §10.1 计数原理 教学目的要求: 1.掌握分类计数原理与分步计数原理的概念和区别; 2.能利用两个原理分析和解决一些简单的应用问题; 3.通过对一些应用问题的分析,培养自己的归纳概括和逻辑判断能力. 教学重点、难点: 两个原理的概念与区别 授课方法: 任务驱动法 小组合作学习法 教学参考及教具(含多媒体教学设备): 《单招教学大纲》、课件 授课执行情况及分析: 板书设计或授课提纲 §10.1 计数原理 1、加法原理 2、乘法原理 3、两个原理的区别

  • 高教版中职数学基础模块下册:10.2《概率》教学设计

    课程课题随机事件和概率授课教师李丹丹学时数2授课班级 授课时间 教学地点 背景分析正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件;分类用加法原理,分步用乘法原理,单纯这点学生是容易理解的,问题在于怎样合理地进行分类和分步教学中给出的练习均在课本例题的基础上稍加改动过的,目的就在于帮助学生对这一知识的理解与应用 学习目标 设 定知识目标能力(技能)目标态度与情感目标1、理解随机试验、随机事件、必然事件、不可能事件等概念 2、理解基本事件空间、基本事件的概念,会用集合表示基本事件空间和事件 1 会用随机试验、随机事件、必然事件、不可能事件等概念 2 会用基本事件空间、基本事件的概念,会用集合表示基本事件空间和事件 3、掌握事件的基本关系与运算 了解学习本章的意义,激发学生的兴趣. 学习任务 描 述 任务一,随机试验、随机事件、必然事件、不可能事件等概念 任务二,理解基本事件空间、基本事件的概念,会用集合表示基本事件空间和事件

  • 高教版中职数学基础模块下册:10.3《总体、样本与抽样方法》教学设计

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 10.3总体、样本与抽样方法(一) *创设情境 兴趣导入 【实验】 商店进了一批苹果,小王从中任意选取了10个苹果,编上号并称出质量.得到下面的数据(如表10-6所示): 苹果编号12345678910质量(kg)0.210.170.190.160.200.220.210.180.190.17 利用这些数据,就可以估计出这批苹果的平均质量及苹果的大小是否均匀. 介绍 质疑 讲解 说明 了解 思考 启发 学生思考 0 10*动脑思考 探索新知 【新知识】 在统计中,所研究对象的全体叫做总体,组成总体的每个对象叫做个体. 上面的实验中,这批苹果的质量是研究对象的总体,每个苹果的质量是研究的个体. 讲解 说明 引领 分析 理解 记忆 带领 学生 分析 20*巩固知识 典型例题 【知识巩固】 例1 研究某班学生上学期数学期末考试成绩,指出其中的总体与个体. 解 该班所有学生的数学期末考试成绩是总体,每一个学生的数学期末考试成绩是个体. 【试一试】 我们经常用灯泡的使用寿命来衡量灯炮的质量.指出在鉴定一批灯泡的质量中的总体与个体. 说明 强调 引领 观察 思考 主动 求解 通过例题进一步领会 35

  • 高教版中职数学基础模块下册:10.4《用样本估计总体》教学设计

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 10.4 用样本估计总体 *创设情境 兴趣导入 【知识回顾】 初中我们曾经学习过频数分布图和频数分布表,利用它们可以清楚地看到数据分布在各个组内的个数. 【知识巩固】 例1 某工厂从去年全年生产某种零件的日产记录(件)中随机抽取30份,得到以下数据: 346 345 347 357 349 352 341 345 358 350 354 344 346 342 345 358 348 345 346 357 350 345 352 349 346 356 351 355 352 348 列出频率分布表. 解 分析样本的数据.其最大值是358,最小值是341,它们的差是358-341=17.取组距为3,确定分点,将数据分为6组. 列出频数分布表 【小提示】 设定分点数值时需要考虑分点值不要与样本数据重合. 分 组频 数 累 计频 数340.5~343.5┬2343.5~346.5正 正10346.5~349.5正5349.5~352.5正  ̄6352.5~355.5┬2355.5~358.5正5合 计3030 介绍 质疑 引领 分析 讲解 说明 了解 观察 思考 解答 启发 学生思考 0 10*动脑思考 探索新知 【新知识】 各组内数据的个数,叫做该组的频数.每组的频数与全体数据的个数之比叫做该组的频率. 计算上面频数分布表中各组的频率,得到频率分布表如表10-8所示. 表10-8 分 组频 数频 率340.5~343.520.067343.5~346.5100.333346.5~349.550.167349.5~352.560.2352.5~355.520.067355.5~358.550.166合 计301.000 根据频率分布表,可以画出频率分布直方图(如图10-4). 图10-4 频率分布直方图的横轴表示数据分组情况,以组距为单位;纵轴表示频率与组距之比.因此,某一组距的频率数值上等于对应矩形的面积. 【想一想】 各小矩形的面积之和应该等于1.为什么呢? 【新知识】 图10-4显示,日产量为344~346件的天数最多,其频率等于该矩形的面积,即 . 根据样本的数据,可以推测,去年的生产这种零件情况:去年约有的天数日产量为344~346件. 频率分布直方图可以直观地反映样本数据的分布情况.由此可以推断和估计总体中某事件发生的概率.样本选择得恰当,这种估计是比较可信的. 如上所述,用样本的频率分布估计总体的步骤为: (1) 选择恰当的抽样方法得到样本数据; (2) 计算数据最大值和最小值、确定组距和组数,确定分点并列出频率分布表; (3) 绘制频率分布直方图; (4) 观察频率分布表与频率分布直方图,根据样本的频率分布,估计总体中某事件发生的概率. 【软件链接】 利用与教材配套的软件(也可以使用其他软件),可以方便的绘制样本数据的频率分布直方图,如图10-5所示. 图10?5 讲解 说明 引领 分析 仔细 分析 关键 语句 观察 理解 记忆 带领 学生 分析 25

  • 2023年新型职业农民培育工作总结材料汇编(3篇)

    一、基本情况xxxx年我县通过,公开、公平、公正的方法,按照上级文件和《xx县xxxx年全县农民培训工作方案的通知》(x农字(xxxx)xxx号)的要求,遴选了xx县旅游工业中等专业学校为培训工作的第三方,确定了培训对象为家庭农场主、农民合作社带头人、种养大户。按照工作方案要求,已全部完成任务,即经营管理型xxx人,技能服务型xx人,共计培训xxx人。二、项目组织开展情况(一)领导重视。按照省、市文件精神,我县各级领导对高素质农民培育工作非常重视,县成立高素质农民培育工作领导小组。在高素质农民培育过程中,县农业农村局长到实训现场指导培训工作。(二)精准遴选培育对象。根据《xx县xxxx年高素质农民培训工作实施方案》,认真开展了培训对象的遴选。重点面向家庭农场主、农民合作社带头人和种养大户,统筹推进新型农业经营和服务主体能力提升、种养加能手技能培训、农村创新创业者培养、乡村治理及社会事业发展带头人培育等行动,大力培养高素质农民队伍。

  • 2023年度人事管理人员个人工作总结(述职报告)

    二、存在的问题和不足一是留人机制有待完善。一方面,面试过程中已通过面试的部分应聘人员,后期并未入职报道;另一方面,本年度新进人员辞离职人数达到X人,其中X人为研究生学历。现有的人员用工方式不够有吸引力,造成了引不进、留不住局面。二是人事管理制度办法有待健全。人员录用、试用期和解聘的相关管理办法,人员证书管理、专业技术岗位设置管理办法,人员辞离职的相关工作程序和管理办法,都还需要进一步制定和完善。三、下一步工作努力方向为适应在深化机构改革中,面临的新形势、新任务和新要求,下一步工作中,人力资源室全体人员将继续埋头苦干、勇毅前行,立足本职岗位职责,不断调整工作思路、改进工作方式方法;通过对现有人事管理制度的执行情况进行分析和梳理,有针对性的查漏补缺,确保各项制度的健康持续运行,为干部职工创造更加良好的成长环境和制度保障,充分激发人才队伍的生机活力,为持续推进XXX的高质量发展做出应有的贡献。

  • 公司领导干部轮岗个人工作总结集团企业述职报告汇报

    三、担当筹备主责,无缝隙对接建设、营运我主动分担xx领导班子工程建设压力,牵头负责营运筹备工作。一是把握大局,制定筹备、并网等工作方案。成立领导及工作小组,倒排工作计划,有序推进各项工作顺利开展。二是综合协调,完成通车各类政策性文件审批。协调省交通厅、发改委、交通部路网中心及地方单位,完成收费站开通、费率核算、路政大队成立等xx余项工作审批。三是建章立制,保障通车收费平稳过渡。制定实施了收费管理办法、收费作业规程等xx部系列制度及预案,确保通车收费有章可循,有据可依。四是加强培训,提升新员工业务水平。组织开展xx名新员工入职培训,举办收费、监控等各类业务培训xx次,共xx人次。五是狠抓落实,有序推进筹备系列工作。每周召开工作推进会;深入现场,靠前指挥,督促各项工作落到实处。及时沟通房建、机电等部门,提出合理化建议xx多条,实现建设与运营无缝对接。

  • 关于总工会社会联络部社会组织处处长挂职锻炼工作总结

    二是树立问题意识。问题是事物矛盾的直观反映,是实践发展的有力引导,抓住了主要问题,就找到了工作的着力点和突破口。实践中有什么问题,我们在工作中就要研究什么问题,努力解决什么问题。这是最朴实的方法论。比如,关于简化报表的问题。在调查研究中,基层同志反映,工会系统数据库要整合共享,不能都分头管理,多头要数据,重复要数据,还有大量的日常检查填表、统计报表,基层不堪重负,影响队伍力量办实事,“填表不等于工作”,实干才能服务职工。三是注重基层导向。基层是工会全部工作的基础。×市总工会高度重视基层,率先在乡镇街道全部建立总工会,率先明确乡镇街道总工会经费留成×%,率先在乡镇街道全部建立工会服务站,并由市区两级工会分担聘用专职工会社会工作者,有了一支专门的基层工会工作者队伍,保障了基层工会作用发挥。做实基层,夯实基础,工作才能落到实处,工会才能扎根职工群众之中。

  • 在全区半年工作总结分析会议上的讲话

    全力确保稳增长。当前经济发展形势十分复杂,各种困难问题叠加,稳增长的压力很大。我区正处在转型发展的关键期、过渡期,经济发展基础不厚实、支撑不牢固,面临的困难更多。总的看,上半年经济工作有喜有忧。部分指标超过时间进度,但有些指标落后时间进度,生产总值、规模以上工业增加值、固定资产投资等指标无论总量还是增幅都与先进地区有较大差距。

  • 在全市州防汛抗旱电视电话会议上的讲话

    要认清形势,切实增强责任感紧迫感使命感。去年,全州各级各部门立足防大汛、抗大旱、抢大险、救大灾,有效应对了23轮强降雨过程,有力保障了人民群众生命财产安全。去年,我州是全省的安全生产先进单位,无论是防汛抗旱还是疫情防控,都取得了很好的成绩。今年,我们要再接再厉,继续统筹好发展与安全工作,继续抓好安全生产、防汛抗旱工作。今年以来,各级各部门积极开展各项汛前准备工作,在责任落实、预案修订、队伍建设、物资储备等方面都取得了明显的进展,培训演练、隐患排查整改等工作都在稳步推进当中。但从各方面情况综合分析来看,全州防汛抗旱形势依然不容乐观。

  • 在全镇森林防火和抗旱工作会议上的讲话

    一是要按照“先生活、后生产”的原则和“生产服从生活、保苗服从人饮、发电服从灌溉、养殖服从抗旱、工业服从农业”的要求,抓紧做好实施应急供水方案,把保障人畜饮水作为抗旱的首要任务,突出重点,统筹兼顾,千方百计保障镇村生活用水需求。要加强管理和组织调度,高度重视镇村供水工作,加强水源保护和水质监测,对供水工程进行统一管理及维护,组织实施计划用水、节约用水,确保镇村供水安全;采取有力措施,对确实存在困难的地方,要制订供水方案,立即组织送水车辆,发动村组干部和镇机关、中心(所)干部,按照“先保人、后保畜”的原则组织送水,切实解决农村人畜饮水困难。同时,积极发动和组织群众寻找水源,实施应急水源工程建设,开展抗灾自救。二是积极发动群众做好生产自救。

  • 在全市工业和信息化工作会议上的讲话

    “十三五”以来,我们按照“高端能化强市”战略,加快实施《<中国制造2025>XX实施意见》,改造提升传统产业,培育壮大战略性新兴产业,大力发展高端能化、绿色载能和XX技术产业,依托互联网技术发展新经济、新业态,构建多元发展、多极支撑的现代工业体系,工业经济总量不断攀升,规模以上工业总产值累计超过XX亿元,工业增加值累计突破XX亿元,年均增速X%,工业占GDP比重达X%。非公经济快速成长,市场主体达到X万户,非公经济占GDP比重较“十二五”末提高X个百分点。

  • 在市水利行业防汛抗旱会议上的讲话

    一、认清形势,切实增强防汛抗旱工作的责任感。从这两天降水情况来看,局地强对流天气已经显现,部分乡镇村屯已经发生局地暴雨,造成了一定的经济损失,甚至出现人员伤亡。我们一定要坚持以人为本、生命至上、安全第一、以防为主、防抗结合的防汛工作理念,切实增强责任感、使命感,依法防控、科学防控、综合防控、群防群控,完善细化工作措施,最大程度减轻灾害损失,确保主要江河、大中型水库、重点城镇防洪安全,保障好人民群众生命安全和城乡居民生活用水安全。

上一页123...293031323334353637383940下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!