三:巩固新知1、判断对错:(1)如果一个菱形的两条对角线相等,那么它一定是正方形. ( )(2)如果一个矩形的两条对角线互相垂直,那么它一定是正方形.( )(3)两条对角线互相垂直平分且相等的四边形,一定是正方形. ( )(4)四条边相等,且有一个角是直角的四边形是正方形. ( )2、已知:点E、F、G、H分别是正方形ABCD四条边上的中点,并且E、F、G、H分别是AB、BC、CD、AD的中点.求证:四边形EFGH是正方形.3、自己完成课本P23的议一议四、小结1.正方形的判定方法.2.了解正方形、矩形、菱形之间的联系与区别,体验事物之间是相互联系但又有区别的辩证唯物主义观点.3.本节的收获与疑惑.
∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可证:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四边形EFGH为菱形.∵EO+GO=FO+HO,即EG=HF,∴四边形EFGH为正方形.方法总结:对角线互相垂直平分且相等的四边形是正方形.探究点二:正方形、菱形、矩形与平行四边形之间的关系填空:(1)对角线________________的四边形是矩形;(2)对角线____________的平行四边形是矩形;(3)对角线__________的平行四边形是正方形;(4)对角线________________的矩形是正方形;(5)对角线________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法总结:从对角线上分析特殊四边形之间的关系应充分考虑特殊四边形的性质与判别,防止混淆.菱形、矩形、正方形都是平行四边形,且是特殊的平行四边形,特殊之处在于:矩形是有一个角为直角的平行四边形;菱形是有一组邻边相等的平行四边形;而正方形是兼具两者特性的更特殊的平行四边形,它既是矩形,又是菱形.
故最少由9个小立方体搭成,最多由11个小立方体搭成;(3)左视图如右图所示.方法点拨:这类问题一般是给出一个由相同的小正方体搭成的立体图形的两种视图,要求想象出这个几何体可能的形状.解答时可以先由三种视图描述出对应的该物体,再由此得出组成该物体的部分个体的个数.三、板书设计视图概念:用正投影的方法绘制的物体在投影 面上的图形三视图的组成主视图:从正面得到的视图左视图:从左面得到的视图俯视图:从上面得到的视图三视图的画法:长对正,高平齐,宽相等由三视图推断原几何体的形状通过观察、操作、猜想、讨论、合作等活动,使学生体会到三视图中位置及各部分之间大小的对应关系.通过具体活动,积累学生的观察、想象物体投影的经验,发展学生的动手实践能力、数学思考能力和空间观念.
教学目标:1.经历由实物抽象出几何体的过程,进一步发展空间观念。2.会画圆柱、圆锥、球的三视图,体会这几种几何体与其视图之间的相互转化。3.会根据三视图描述原几何体。教学重点:掌握部分几何体的三视图的画法,能根据三视图描述原几何体。教学难点:几何体与视图之间的相互转化。培养空间想像观念。课型:新授课教学方法:观察实践法教学过程设计一、实物观察、空间想像设置:学生利用准备好的大小相同的正方形方块,搭建一个立体图形,让同学们画出三视图。而后,再要求学生利用手中12块正方形的方块实物,搭建2个立体图形,并画出它们的三视图。学生分小组合作交流、观察、作图。议一议1.图5-14中物体的形状分别可以看成什么样的几何体?从正面、侧面、上面看这些几何体,它们的形状各是什么样的?2.在图5-15中找出图5-14中各物体的主视图。3.图5-14中各物体的左视图是什么?俯视图呢?
∴OE=OF=OG=OH.又∵EG⊥FH,∴四边形EFGH为菱形.∵EO+GO=FO+HO,即EG=HF,∴四边形EFGH为正方形.方法总结:对角线互相垂直平分且相等的四边形是正方形.探究点二:正方形、菱形、矩形与平行四边形之间的关系填空:(1)对角线________________的四边形是矩形;(2)对角线____________的平行四边形是矩形;(3)对角线__________的平行四边形是正方形;(4)对角线________________的矩形是正方形;(5)对角线________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法总结:从对角线上分析特殊四边形之间的关系应充分考虑特殊四边形的性质与判别,防止混淆.菱形、矩形、正方形都是平行四边形,且是特殊的平行四边形,特殊之处在于:矩形是有一个角为直角的平行四边形;菱形是有一组邻边相等的平行四边形;而正方形是兼具两者特性的更特殊的平行四边形,它既是矩形,又是菱形.
1)正方形的边长为4cm,则周长为( ),面积为( ) ,对角线长为( );2))正方形ABCD中,对角线AC、BD交于O点,AC=4 cm,则正方形的边长为( ), 周长为( ),面积为( )3)在正方形ABCD中,AB=12 cm,对角线AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性质是( ) A、四个角相等 B、对角线互相垂直平分 C、对角互补 D、对角线相等. 5)、正方形具有而菱形不一定具有的性质( ) A、四条边相等 B对角线互相垂直平分 C对角线平分一组对角 D对角线相等. 6)、正方形对角线长6,则它的面积为_________ ,周长为________. 7)、顺次连接正方形各边中点的小正方形的面积是原正方形面积的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例讲解:1、(课本P21例1)学生自己阅读课本内容、注意证明过程的书写2、 如图,分别以△ABC的边AB,AC为一边向外画正方形AEDB和正方形ACFG,连接CE,BG.求证:BG=CE
2、欣赏故事,对皮球的动态—蹦、滚、飞产生兴趣。3、通过观察、比较、理解空气对皮球运动状态所起的作用。【活动准备】1、录音机(自备一段音乐)。2、活动前,幼儿以拍、滚、抛、踢等方式玩过皮球。3、充足气的皮球若干(与幼儿人数相等),瘪皮球6个。【活动过程】 一、会跳舞的皮球。1、幼儿一起听音乐做球操。2、教师说:“小朋友,刚才我们做操时,皮球是怎么运动的。请小朋友想一想,我们跳舞的时候,是怎样运动的。”教师启发引导幼儿互相讨论并说一说。3、请个别幼儿用肢体动作表现皮球蹦跳、滚动、飞起来的状态。大家一起用肢体动作表现皮球蹦跳、滚动、飞起来的状态。
一、 设计小跨栏发现问题一:用什么材料安全、简便?幼儿A:用木头,刘翔就是跨木栏杆。幼儿B:木头太重,用塑料管。我家装修有许多细细的管。幼儿C:那要回家拿呀?有没有现在就可以用的?考虑到运动的安全性,我们选择了报纸,将8开的报纸一一卷起来就成了纸棍栏杆,小朋友的椅子正好合适做支架,既简单方便又安全实用。(如图╠╣───╠╣)很快的孩子们三三两两地架起了小跨栏,迫不及待地练习了。尽管有的孩子还有些胆怯,在大家的鼓励下还是很勇敢地参与了。问题二:跨跳的时候脚总会碰到椅背,怎么办?不一会他们发现跨跳的时候脚总会碰到椅背,椅子被碰得东倒西歪,有的孩子就把椅子面对面摆放好,这样跳起来就不容易碰到了。(如图╠╗───╔╣)
活动准备:1、借助丰富的网络资源搜集汶川地震的图片、资料。2、诗歌《生命灿烂如花》、《给生命一个笑脸》。3、名人的照片,个人资料。歌曲《阳光总在风雨后》。活动过程:本次班会分为三个环节:一、生命如花。二、笑对人生。三、阳光总在风雨后。由甲、乙两位主持人来主持。一、生命如花:甲:人,最宝贵的是生命。乙:生命,对每个人都只有一次。学生一齐背诵:生命是何等的宝贵,它就像那喷泉一样,是那么的多姿多彩;它就像傍晚的晚霞一样,是那么的美好;它就像二月的鲜花一样,是那么的美丽却短暂。甲、乙(合):人的生命只有一次,所以我们必须珍惜它,必须珍惜我们所拥有的美好时光,山河小学五年(二)班“珍爱生命”主题班会现在开始。然后请邵未来同学演讲《生命灿烂如花》,用心感受自己如花的生命。
分析过焦作市的地理概况和产业优势后,就需要针对由于资源枯竭所带来的问题提出合理化的建议。既然是谈经济转型,就应该将话题的范围明确在这一领域内。通过材料3的相关内容,我们了解到焦作市需要在产业结构调整、培育新的优势产业、增强综合竞争力等三个整改方针上下功夫。因而引导学生针对优势与不足提出建议,以三个整改方针为基准,衡量建议的可行性是锻炼学生解决此类问题的有效途径。在此我将教会学生的是解决问题方法而非案例的内容,正所谓“授之以鱼,不如授之以渔”。接下来针对学生的建议和教材资料分析所罗列的10点整改思路,由学生自由发言提出看法,通过教师的指导和学生的讨论,进而确定经济转型建议的具体方案。最后注意将建议与产业优势相对照,看建议是否都是围绕着产业优势而提出的,这样做会加深学生的印象,通过建议和优势的对应关系,将不难找出此类问题的解题思路。
二是构建风险采集员监督机制。我局在各分局及重点企业建立风险信息采集点,在系统内部各单位公开指定了廉政风险信息管理员,在外部重点企业不公开指定廉政风险信息管理员,进行执法及廉政风险信息采集,多渠道向监察部门传递,由监察部门进行核实分析,构建了规范严密的监督机制。目前为止,共收集风险信息24条,其中有效信息18条,纠正各种不规范行为18次,下达执法建议书14次。三是开发应用网上评价。我局自主研发了纳税人网上评价系统,纳税人可以自由发表意见、建议,进行投诉,实现了背靠背的评价及更大范围、更为有效的监督,使评价结果更加客观、公正。(四)以考核为手段,确保内控预防取得实效积极完善责任考核,严格奖惩追究,建立健全了纠建并举、持续完善的内控预防长效机制。
(一)健全工作机制,确保信息共享通畅。健全平安××建设领导小组牵头,各部门协同配合机制,扎实做好常态化打击整治养老诈骗工作。定期汇总掌握各成员单位推进常态化打击整治养老诈骗工作的进展、经验做法和相关的数据。畅通信息、情报共享渠道,确保案件线索得到更快、更及时处理。(二)加大宣传力度,营造全民反诈氛围。常态化开展涉老年群体反诈宣传进社区、进超市、进公园、进广场、进家庭“五进”活动,在老年人活动密集场所开展喜闻乐见的反诈宣传,共筑全民反诈的钢铁长城。(三)依法打击整治,维护老年人合法权益。各成员单位要注重协同配合,持续开展对所辖场所涉养老诈骗风险隐患的排查整治,做到防患于未然,确保不出现涉养老诈骗问题。公检法要按照“稳、准、狠”要求,持续依法打击整治违法犯罪分子,及时缴脏追赃、最大限度帮群众挽回损失。
定期汇总掌握各成员单位推进常态化打击整治养老诈骗工作的进展、经验做法和相关的数据。畅通信息、情报共享渠道,确保案件线索得到更快、更及时处理。(二)加大宣传力度,营造全民反诈氛围。常态化开展涉老年群体反诈宣传进社区、进超市、进公园、进广场、进家庭“五进”活动,在老年人活动密集场所开展喜闻乐见的反诈宣传,共筑全民反诈的钢铁长城。(三)依法打击整治,维护老年人合法权益。各成员单位要注重协同配合,持续开展对所辖场所涉养老诈骗风险隐患的排查整治,做到防患于未然,确保不出现涉养老诈骗问题。公检法要按照“稳、准、狠”要求,持续依法打击整治违法犯罪分子,及时缴脏追赃、最大限度帮群众挽回损失。(四)加强工作指导,确保反诈实效。区专项办要加强督导检查,定期对各成员单位开展常态化打击整治养老诈骗工作进行督查,确保各成员单位扎实有序开展工作。
一个数各个位上的数字之和如果是3的倍数,那么,这个数一定是3的倍数。否则,这个数就不是3的倍数。4、检验结论。(1)我们从100以内的数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?(2)利用100以内数表来验证。(3)延伸到三位数或更大的数。如:573、753、999、1236、2244、7863……(4)学生自己写数并验证,然后小组交流,观察得出的结论是否相同。在本环节,我用充足的时间让小组代表上讲台展示成果,说出各自的思考过程,对学生的回答我给予充分的肯定和表扬,引导学生验证自己的发现是否正确,最后达成共识:一个数的各位上的数的和是3的倍数,这个数就3的倍数(板书)。这样便巧妙地突出本课的重点,突破了本课的难点。
《0的认识和有关0的加减法》是《数学(人教版义务教育课程标准实验教科书)》一年级上册第29页的教学内容。数字0在生活中应用广泛,不同的应用体现出0的不同含义,有关0的加减法也具有其独特的规律和特点。本节课教学目标有下:1.通过游戏、活动,使学生理解0的含义,会读、会写数字0,了解数的顺序。2.使学生在情境体验中理解有关0的加、减法的含义,并能熟练计算。3.通过在数学活动中的观察、思考、讨论、探索,提高学生自主学习的意识和发现简单规律的能力。4.培养学生的想像力、语言表达能力和初步的推理应用能力。教学实录与评析:一、活动中认识0──关于0的含义和书写1.排排队──复习数的顺序。师:这节课,数字王国有几位小客人要到咱们教室找朋友。他们来了。(敲门声)
3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
一、说教材本课内容是人教版义务教育课程标准实验教科书三年级上册90页到91页内容。这部分内容是学生在掌握了万以内整数知识的基础上进行教学的。从整数到分数是数的概念的一次扩展,又是学生认识数的概念的一次质的飞跃。无论是意义,还是读写方法、计算方法,分数和整数都有很大的差异。因此,教材将分数的知识分段教学。本学段是分数的初步认识,这节课是认识几分之一。认识几分之一是本单元教学内容的核心。二、说学情分析在此之前,学生在生活中可能接触过二分之一这样的分数,但并不理解它的含义。分数的产生是从平均分某个不可分的单位开始的,学生生活中已经有这样的经验。例如,妈妈把一个月饼平均分成两份给弟弟和妹妹,每人分得半个月饼。但学生不会用分数来表述。所以,教学中我特别注意从学生已有的生活经验出发,在丰富的操作活动中主动去获取分数的相关知识。
一、说教材1、教学内容北师大版小学数学五年级上册第五单元的第一课时《分数的再认识(一)》。2、教材分析本课是学生在三年级初步认识分数的基础上,进行深入和拓展的。在三年级,学生已结合情境和直观操作,体验了分数产生的过程,认识了整体“1”,初步了解了分数的意义,能认、读、写一些简单的分数。本节课是在此基础上,进一步引导学生认识和理解分数,为后面进一步学习、运用分数知识做好铺垫。本课的课题是《分数的再认识》,这个“再认识”,我想应该有两方面的含义,一是进一步认识、理解分数的意义,二是结合具体的情境,让学生体会“整体”与“部分”的关系,体会“整体不同,同一个分数所对应的数量也不同”,从而体验数学知识形成的全过程。3、教学目标根据教学内容和学生的认知能力,我将本节课的教学目标制定如下: