方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
首先列表,利用未知数的取值,根据一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0)分别计算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知数的大致取值范围,然后再进一步在这个范围内取值,逐步缩小范围,直到所要求的精确度为止.(2)在估计一元二次方程根的取值范围时,当ax2+bx+c(a≠0)的值由正变负或由负变正时,x的取值范围很重要,因为只有在这个范围内,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板书设计一元二次方程的解的估算,采用“夹逼法”:(1)先根据实际问题确定其解的大致范围;(2)再通过列表,具体计算,进行两边“夹逼”,逐步获得其近似解.“估算”在求解实际生活中一些较为复杂的方程时应用广泛.在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法.教学设计上,强调自主学习,注重合作交流,在探究过程中获得数学活动的经验,提高探究、发现和创新的能力.
(2)假如你摸一次,估计你摸到白球的概率P(白球)=;(3)试估算盒子里黑球有多少个.解:(1)0.6(2)0.6(3)设黑球有x个,则2424+x=0.6,解得x=16.经检验,x=16是方程的解且符合题意.所以盒子里有黑球16个.方法总结:本题主要考查用频率估计概率的方法,当摸球次数增多时,摸到白球的频率mn将会接近一个数值,则可把这个数值近似看作概率,知道了概率就能估算盒子里黑球有多少个.三、板书设计用频率估计概率用频率估计概率用替代物模拟试验估计概率通过实验,理解当实验次数较大时实验频率稳定于理论频率,并据此估计某一事件发生的概率.经历实验、统计等活动过程,进一步发展学生合作交流的意识和能力.通过动手实验和课堂交流,进一步培养学生收集、描述、分析数据的技能,提高数学交流水平,发展探索、合作的精神.
由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P(两次摸出的球都是白球)=26=13;(2)列表如下:由上表可知,共有9种结果,且每种结果是等可能的,其中两次摸出白球的结果有4种,所以P(两次摸出的球都是白球)=49.方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.三、板书设计用树状图或表格求概率画树状图法列表法通过与学生现实生活相联系的游戏为载体,培养学生建立概率模型的思想意识.在活动中进一步发展学生的合作交流意识,提高学生对所研究问题的反思和拓展的能力,逐步形成良好的反思意识.鼓励学生思维的多样性,发展学生的创新意识.
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直.他们在A处测得塔尖D的仰角为45°,再沿着射线AN方向前进50米到达B处,此时测得塔尖D的仰角∠DBN=61.4°,小山坡坡顶E的仰角∠EBN=25.6°.现在请你帮助课外活动小组算一算塔高DE大约是多少米(结果精确到个位).解析:根据锐角三角函数关系表示出BF的长,进而求出EF的长,得出答案.解:延长DE交AB延长线于点F,则∠DFA=90°.∵∠A=45°,∴AF=DF.设EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,则DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大约是81米.方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.
然后,她沿着坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度(参考数据:2≈1.41,结果精确到0.1米).解析:作辅助线EF⊥AC于点F,根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,通过平角减去其他角从而得到∠AEF=45°,即可求出AE的长度.解:作EF⊥AC于点F,根据题意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娱乐场地所在山坡AE的长度约为190.4米.方法总结:解决本题的关键是能借助仰角、俯角和坡度构造直角三角形,并结合图形利用三角函数解直角三角形.
五、总结存储1.教师总结这篇演讲词,作者用幽默诙谐的语言阐述了自己人生中的一个重要抉择——大力扶植年轻人。作者善于自我调侃,在自我解剖中进行了深入的分析,强调了扶植年轻人的重要性和必要性。演讲中列举了大量名人事例进行论证,使演讲具有很强的说服力。这篇演讲词展示了一位科学家精彩绝伦的语言魅力:不但有科学原理,而且有人生哲理;不但有学术的穿透力,而且有情感的震撼力;不但有理论的清晰度,而且有语言的幽默感——这一切构成了王选演讲的独特风采。我们在体会王选演讲魅力的同时,也领略到了他的人格魅力。2.布置作业(1)人的一生所做的重要抉择,如果与时代和国家紧密相连,意义会更加重大。我们在人生的关键阶段,如选择未来事业时,会做出怎样的抉择?请你写一段200字左右的演讲词,并在小组内演讲交流。(2)课外阅读王选的《我一生中的八个重要抉择》。
2.2.1服装加工企业车间作业现场人员密集,电气线路复杂,易燃物品多,一旦出现火源,易蔓延引起火灾造成群死群伤。2.2.2一般火灾事故易发生在车间和员工宿舍区内,电气线路及装置安装不规范的、无人监视的作业现场。作业现场用电装置(包括:线路、控制装置、用电设备和手持电动工具等)。2.3危险因素分析
(一)危险化学品及其它有毒有害物质在经营、贮存、运输、使用和处置过程中发生的爆炸、燃烧、大面积泄漏等事件;(二)工业企业生产过程中因意外事故造成的废水、废气、固废、电磁辐射等环境污染破坏事件;(三)影响饮用水源地水质安全的突发性环境污染事件;(四)因不可抗力(含自然原因和社会原因)而造成危及环境安全及人体健康的环境污染事件;
一、导入新课。教师用钢琴弹奏《c小调第五(命运)交响曲的》的主题并提问:这是我们都很熟悉的乐曲,那么谁能说出它的作曲者和乐曲的名称。二、教学新课。(1)播放完整的《c小调第五(命运)交响曲》的第一乐章的CD,同时让学生在乐曲播放的过程中展开丰富的想象。思考题:听完讨论“你在听乐曲的过程中想到了什么?”注:命运与希望,抗争与胜利,压抑与悲愤,雄壮有力与热情冲动。(2)第二次放乐曲,并用乐曲做背景,介绍贝多芬的生平和重要作品。思考题:贝多芬的生平经历与命运这部交响曲有着什么样的关系?注:不幸的生平使贝多芬的热情和冲动达到顶峰,从而迸发出了与命运抗争的创作乐思。(3)聆听《c小调第五(命运)交响曲》。思考题:乐曲表达了贝多芬怎样的思想感情?注意听出或唱出主题旋律听完讨论。注:通过斗争取得胜利。对命运的反抗和斗争,对生活的希望和憧憬,对贵族的厌恶和唾弃,感受着法国大革命的震撼和激荡,对未来的坚定和激昂,和对幸福的渴望等。
1、了解食品的保质期及它的作用,知道应该在保质期内实用食品,激发幼儿的食品卫生意识;2、能较清楚地表达自己的探索和发现;活动准备:教室里面的各种废旧物品活动流程:谈话导入——观察感知——联系3、15讲一讲活动过程:1、谈话导入师:老师今天的身体有点不舒服,我的肚子有点疼,你们知道怎么回事吗?(幼儿猜测) 其实,我是吃坏了东西了,哎,昨天的时候,老师和好朋友出去玩,买了一些牛奶喝了,谁知道牛奶是过期的,所以,老师的肚子现在还疼呢。吃了过期的东西会不舒服的,会生病的。 老师是怎么知道吃过的牛奶是过期的呢?(盒子上有时间的)盒子上的时间叫食品保质期
1、让幼儿了解各消化器官的功能和食物在人体内消化吸收过程2、学习简单的自我保护方法3、培养幼儿良好的饮食和卫生习惯活动准备: (1)电脑制作《小豆子的旅行》(或图片及小豆子旅行的故事录音)(2)健康知识卡片、消化图、自制健康行为棋活动过程:
目标:1、在观察、劳动、品尝中了解玉米的外形特征和功用。 2、尝试剥玉米,感受劳动的乐趣,萌生热爱劳动的感情。工具材料: 各类玉米食品,玉米棒,剥玉米工具,毛巾,幻灯片,录音磁带等。
2.幼儿操作材料:长铜丝、短铜丝若干,粗细不同的圆铅笔、吸管、小棒等若干,圆形彩纸片若干,浆糊、抹布,橡皮泥,别针。活动内容:1.演示彩球玩具,引起幼儿兴趣。⑴教师演示玩具,请幼儿观察现象。⑵介绍玩具的构造。①教师:这个玩具有几个部分组成的呢?②示范弹簧的制作方法。2.请幼儿来制作玩具。⑴幼儿尝试自己制作旋转彩球玩具,教师巡回指导。⑵幼儿玩一玩自己制作的玩具。⑶交流制作经验。教师:①你是怎样做旋转彩球的?你的彩球能滑下来吗?怎样滑下来的?②师生共同小结。3.讨论:为什么彩球下滑转动快慢不一样。⑴比一比:谁的小球转得快?⑵想一想:为什么彩球转的快慢不一样呢?弹簧粗的转得快还是弹簧细的转得快?⑶小结:原来有的小朋友他绕的弹簧比较细,所以彩球转的快;有的小朋友绕的弹簧粗,所以彩球转的慢些。4.怎样使彩球转得快些。⑴猜一猜:不改变弹簧的粗细能不能让彩球转得快些?⑵幼儿尝试,教师做必要的提醒和指导。⑶小结:活动延伸:1.将材料投放在科学角,供幼儿平时操作。提供橡皮泥,鼓励幼儿尝试将纸球换成橡皮泥,改变两边橡皮泥的重量,观察其下滑速度的变化。2.在日常生活中引导幼儿观察重力与速度变化的现象。活动建议:1.长短铜丝应分别为两种规格,利于幼儿对比。
活动过程:一、引导幼儿看范画,导入活动 师:“小朋友,这是谁啊?狮子是百兽之王。它代表着威武、吉利。人们都很喜欢它。今天,我们就要用版画的方式来表现狮子。把狮子的威武画出来。” 二、引导幼儿观察狮子的身体结构 1、引导幼儿看范画和幼儿共同分析狮子的特征。 师:“狮子长的是什么样子的?是什么颜色的?它喜欢吃什么?生活在那里?” 2、幼儿自由讨论交流。 小结:“狮子有一个长圆形的头,一双三角眼可历害了,最主要的是它那满头的毛看上去很威武,圆圆的身体,四条粗壮的腿,还有那一条像小棒一样的尾巴,尾巴末还有一小团毛。” (华令玲说:老师我在电视里看见狮子是金黄色的,它分身体圆鼓鼓的,很大。华楚楚说:狮子满身是毛,眼睛很凶。刘梦静说:狮子有胡子的,它的毛很长……) 幼儿对狮子比较熟悉,平时在图书、电视里经常能够接触到狮子,所以对于它的样子能够比较熟悉的描述出来。
2、再用色笔添画各种动态的螃蟹。3、结合画面学习讲述情节简单的故事。准备:1.红、蓝水粉颜料若干份,笔、幼儿用纸、抹布。2.录音机、磁带。
活动准备: 幻灯片:各种昆虫、幼儿脸部彩绘范例;镜子、彩绘笔等。活动过程: 一、观察昆虫爬行图片,感受美感。1、已有经验导入:你们喜欢昆虫吗?你认识哪些昆虫? 2、逐一欣赏幻灯片:昆虫世界真热闹,虫虫们正在举行爬行大赛,比谁爬得美,你觉得谁最美,为什么?(引导幼儿观察昆虫爬行时的姿态、路线、及周围环境) 3、拓展:昆虫们还会爬到哪里去?
学画京剧脸谱,知道脸谱的对称性准备:教师范例、幼儿绘画用品流程:欣赏讲解——教师示范——幼儿作画——小结过程:一、导入活动,引起幼儿活动的兴趣 教师:小朋友,你们看到过电视里面唱京剧吗?京剧是一个什么样的戏剧呢?知 它的来历吗?(小朋友讨论,发言)教师归纳:京剧是我国北京地区的一个传统戏剧,有几百年的历史了,有很多的表演艺术家,最有特色的京剧的服装,还有脸谱,脸谱能够表现各种不同角色的任务,如白鼻子代表坏人,红脸代表好人等。你们想不想画这些京剧脸谱人物呢?