提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

部编人教版一年级上册《d t n l》说课稿

  • 北师大初中七年级数学上册有理数的加法法则教案1

    方法总结:股票每天的涨跌都是在前一天的基础上进行的,不要理解为每天都是在67元的基础上涨跌.另外熟记运算法则并根据题意准确列出算式也是解题的关键.三、板书设计加法法则(1)同号两数相加,取与加数相同的符号,把绝对 值相加.(2)异号两数相加,取绝对值较大加数的符号,并 用较大的绝对值减去较小的绝对值.(3)互为相反数的两数相加得0.(4)一个数同0相加,仍得这个数.本课时利用情境教学、解决问题等方法进行教学,使学生在情境中提出问题,并寻找解决问题的途径,因此不知不觉地进入学习氛围,把学生从被动学习变为主动想学.在本节教学中,要坚持以学生为主体,教师为主导,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中.

  • 北师大初中七年级数学上册有理数的混合运算教案2

    1、掌握有理数混合运算法则,并能进行有理数的混合运算的计算。2、经历“二十四”点游戏,培养学生的探究能力[教学重点]有理数混合运算法则。[教学难点]培养探索思 维方式。【教学过程】情境导入——有理数的混合运算是指一个算式里含有加、减、乘、除、乘方的多种运算.下面的算式里有哪几种运算?3+50÷22×( )-1.有理数混合运算的运算顺序规定如下:1 先算乘方,再算乘除,最后算加减;2 同级运算,按照从左至右的顺序进行;3 如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。 加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方(今后将会学到)叫做第三级运算。注意:可以应用运算律,适当改变运算顺序,使运算简便.合作探究——

  • 北师大初中数学八年级上册从统计图分析数据的集中趋势1教案

    1.能从统计图中获取信息,并求出相关数据的平均数、中位数、众数;(重点)2.理解并分析平均数、中位数、众数所体现的集中趋势.(难点)一、情境导入某次射击比赛,甲队员的成绩如下:(1)根据统计图,确定10次射击成绩的众数、中位数,说说你的做法,并与同伴交流.(2)先估计这10次射击成绩的平均数,再具体算一算,看看你的估计水平如何.二、合作探究探究点一:从折线统计图分析数据的集中趋势广州市努力改善空气质量,近年空气质量明显好转,根据广州市环境保护局公布的2006~2010年这五年各年的全年空气质量优良的天数,绘制成折线图如图所示.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是________;(2)这五年的全年空气质量优良天数与它前一年相比较,增加最多的是________年(填写年份);(3)求这五年的全年空气质量优良天数的平均数.解析:(1)由图知,把这五年的全年空气质量优良天数按照从小到大的顺序排列为:333,334,345,347,357,所以中位数是345;

  • 北师大初中数学八年级上册二次根式的运算2教案

    1.关于二次根式的概念,要注意以下几点:(1)从形式上看,二次根式是以根号“ ”表示的代数式,这里的开方运算是最后一步运算。如 , 等不是二次根式,而是含有二次根式的代数式或二次根式的运算;(2)当一个二次根式前面乘有一个有理数或有理式(整式或分式)时,虽然最后运算不是开方而是乘法,但为了方便起见,我们把它看作一个整体仍叫做二次根式,而前面与其相乘的有理数或有理式就叫做二次根式的系数;(3)二次根式的被开方数,可以是某个确定的非负实数,也可以是某个代数式表示的数,但其中所含字母的取值必须使得该代数式的值为非负实数;(4)像“ , ”等虽然可以进行开方运算,但它们仍属于二次根式。2.二次根式的主要性质(1) ; (2) ; (3) ;(4)积的算术平方根的性质: ;(5)商的算术平方根的性质: ;

  • 北师大初中数学八年级上册二次根式及其化简1教案

    方法总结:(1)若被开方数中含有负因数,则应先化成正因数,如(3)题.(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(因式),即化为最简二次根式(后面学到).探究点三:最简二次根式在二次根式8a,c9,a2+b2,a2中,最简二次根式共有()A.1个 B.2个C.3个 D.4个解析:8a中有因数4;c9中有分母9;a3中有因式a2.故最简二次根式只有a2+b2.故选A.方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式.三、板书设计二次根式定义形如a(a≥0)的式子有意义的条件:a≥0性质:(a)2=a(a≥0),a2=a(a≥0)最简二次根式本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系,加深学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否确认结果的合理性等等.

  • 北师大初中数学八年级上册二次根式及其化简2教案

    属于此类问题一般有以下三种情况①具体数字,此时化简的条件已暗中给定,②恒为非负值或根据题中的隐含条件,如(1)小题。③给出明确的条件,如(2)小题。第二类,需讨论后再化简。当题目中给定的条件不能判定绝对值符号内代数式值的符号时,则需讨论后化简,如(4)小题。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同号,又∵a+b=-6<0,∴a<0,b<0∴ .说明:此题中的隐含条件a<0,b<0不能忽视。否则会出现错误。例4.化简: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.这样x=6, ,x=-5,把数轴分成四段(四个区间)在这五段里分别讨论如下:当x≥6时,原式=(x-6)-(1+2x)+(x+5)=-2.当 时,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.当 时,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.当x<-5时,原式=-(x-6)+(1+2x)-(x+5)=2.说明:利用公式 ,如果绝对值符号里面的代数式的值的符号无法决定,则需要讨论。方法是:令每一个绝对值内的代数式为零,求出对应的“零点”,再用这些“零点”把数轴分成若干个区间,再在每个区间内进行化简。

  • 北师大初中数学八年级上册勾股定理的应用2教案

    内容:情景1:多媒体展示:提出问题:从二教楼到综合楼怎样走最近?情景2:如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?意图:通过情景1复习公理:两点之间线段最短;情景2的创设引入新课,激发学生探究热情.效果:从学生熟悉的生活场景引入,提出问题,学生探究热情高涨,为下一环节奠定了良好基础.第二环节:合作探究内容:学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线.让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法.

  • 北师大初中数学八年级上册平行线的性质1教案

    方法总结:平行线与角的大小关系、直线的位置关系是紧密联系在一起的.由两直线平行的位置关系得到两个相关角的数量关系,从而得到相应角的度数.探究点四:平行于同一条直线的两直线平行如图所示,AB∥CD.求证:∠B+∠BED+∠D=360°.解析:证明本题的关键是如何使平行线与要证的角发生联系,显然需作出辅助线,沟通已知和结论.已知AB∥CD,但没有一条直线既与AB相交,又与CD相交,所以需要作辅助线构造同位角、内错角或同旁内角,但是又要保证原有条件和结论的完整性,所以需要过点E作AB的平行线.证明:如图所示,过点E作EF∥AB,则有∠B+∠BEF=180°(两直线平行,同旁内角互补).又∵AB∥CD(已知),∴EF∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∴∠FED+∠D=180°(两直线平行,同旁内角互补).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性质),即∠B+∠BED+∠D=360°.方法总结:过一点作一条直线或线段的平行线是我们常作的辅助线.

  • 北师大初中数学八年级上册认识勾股定理1教案

    方法总结:题中未给出图形,作高构造直角三角形时,易漏掉钝角三角形的情况.如在本例题中,易只考虑高AD在△ABC内的情形,忽视高AD在△ABC外的情形.探究点二:利用勾股定理求面积如图,以Rt△ABC的三边长为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中△ABE的面积为________,阴影部分的面积为________.解析:因为AE=BE,所以S△ABE=12AE·BE=12AE2.又因为AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因为AC2+BC2=AB2,所以阴影部分的面积为14AB2+14AB2=12AB2=12×32=92.故填94、92.方法总结:求解与直角三角形三边有关的图形面积时,要结合图形想办法把图形的面积与直角三角形三边的平方联系起来,再利用勾股定理找到图形面积之间的等量关系.

  • 北师大初中数学八年级上册认识勾股定理2教案

    意图:课后作业设计包括了三个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;作业3是为了拓广知识,进行课后探究而设计,通过此题可让学生进一步认识勾股定理的前提条件.效果:学生进一步加强对本课知识的理解和掌握.教学设计反思(一)设计理念依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习.教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点.(二)突出重点、突破难点的策略为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.

  • 北师大初中数学八年级上册数据的离散程度1教案

    (4)从平均分看,两队的平均分相同,实力大体相当;从折线的走势看,甲队比赛成绩呈上升趋势,而乙队比赛成绩呈下降趋势;从获胜场数看,甲队胜三场,乙队胜两场,甲队成绩较好;从方差看,甲队比赛成绩比乙队比赛成绩波动小,甲队成绩较稳定.综上所述,选派甲队参赛更能取得好成绩.方法总结:本题是反映数据集中程度与离散程度的综合题.从图形中得到两队的成绩,然后从平均数、方差的角度来考虑,在平均数相同的情况下,方差越小的越稳定.三、板书设计数据的离散程度极差:一组数据中最大数据与最小数据的差方差:各个数据与平均数差的平方的平均数 s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]标准差:方差的算术平方根 公式:s=s2经历表示数据离散程度的几个量的探索过程,通过实例体会用样本估计总体的统计思想,培养学生的数学应用能力.通过小组合作,培养学生的合作意识;通过解决实际问题,让学生体会数学与生活的密切联系.

  • 北师大初中数学八年级上册验证勾股定理2教案

    意图:(1)介绍与勾股定理有关的历史,激发学生的爱国热情;(2)学生加强了对数学史的了解,培养学习数学的兴趣;(3)通过让部分学生搜集材料,展示材料,既让学生得到充分的锻炼,同时也活跃了课堂气氛.效果:学生热情高涨,对勾股定理的历史充满了浓厚的兴趣,同时也为中国古代数学的成就感到自豪.也有同学提出:当代中国数学成就不够强,还应发奋努力.有同学能意识这一点,这让我喜出望外.第六环节: 回顾反思 提炼升华内容:教师提问:通过这节课的学习,你有什么样的收获?师生共同畅谈收获.目的:(1)归纳出本节课的知识要点,数形结合的思想方法;(2)教师了解学生对本节课的感受并进行总结;(3)培养学生的归纳概括能力.效果:由于这节课自始至终都注意了调动学生学习的积极性,所以学生谈的收获很多,包括利用拼图验证勾股定理中蕴含的数形结合思想,学生对勾股定理的历史的感悟及对勾股定理应用的认识等等.

  • 北师大初中数学八年级上册轴对称与坐标变化2教案

    8.一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0)则光线从A点到B点经过的路线长是( )A.4 B.5 C.6 D.7第四环节课堂小结1、关于y轴对称的两个图形上点的坐标特征:(x , y)——(- x , y)2、关于x轴对称的两个图形上点的坐标特征:(x , y)——(x , - y)3、关于原点对称的两个图形上点的坐标特征:(x , y)——(- x , -y)第五环节布置作业习题3.5 1,2,3四、 教学反思通过“坐标与轴对称”,经历图形坐标变化与图形的轴对称之间的关系的探索过程, 掌握空间与图形的基础知识和基本技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发学生对数学学习的好奇心与求知欲,学生能积极参与数学学习活动;积极交流合作,体验数学活动充满着探索与创造。教学中务必给学生创造自主学习与合作交流的机会,留给学生充足的动手机会和思考空间,教师不要急于下结论。事先一定要准备好坐标纸等,提高课堂效率。

  • 北师大初中数学八年级上册正比例函数的图象和性质1教案

    探究点三:正比例函数的性质已知正比例函数y=-kx的图象经过一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三点在函数y=(k-2)x的图象上,且x1>x3>x2,则y1,y2,y3的大小关系为()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的图象经过一、三象限,可知-k>0即kx3>x2得y10时,y随x的增大而增大;k<0时,y随x的增大而减小.三、板书设计1.函数与图象之间是一一对应的关系;2.作一个函数的图象的一般步骤:列表,描点,连线;3.正比例函数的图象的性质:正比例函数的图象是一条经过原点的直线.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.已知函数的表达式作函数的图象,培养学生数形结合的意识和能力.理解一次函数的表达式与图象之间的一一对应关系.

  • 北师大初中数学八年级上册正比例函数的图象和性质2教案

    四、教学设计反思这节内容是学生利用数形结合的思想去研究正比例函数的图象,对函数与图象的对应关系有点陌生.在教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图象的对应关系应让学生动手去实践,去发现,对正比例函数的图象是一条直线应让学生自己得出.在得出结论之后,让学生能运用“两点确定一条直线”,很快作出正比例函数的图象.在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力.当然,根据学生状况,教学设计也应做出相应的调整。如第一环节:创设情境 引入课题,固然可以激发学生兴趣,但也可能容易让学生关注代数表达式的寻求,甚至对部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直入主题,如提出问题:正比例函数的代数形式是y=kx,那么,一个正比例函数对应的图形具有什么特征呢?

  • 北师大初中数学八年级上册轴对称与坐标变化1教案

    解析:从各点的位置可以发现A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔细观察每四个点的横、纵坐标,发现存在着一定规律性.因为2015=503×4+3,所以点A2015在第二象限,纵坐标和横坐标互为相反数,所以A2015的坐标为(-504,504).故填(-504,504).方法总结:解决此类题常用的方法是通过对几种特殊情况的研究,归纳总结出一般规律,再根据一般规律探究特殊情况.三、板书设计轴对称与坐标变化关于坐标轴对称作图——轴对称变换通过本课时的学习,学生经历图形坐标变化与图形的轴对称之间的关系的探索过程,掌握空间与图形的基础知识和基本作图技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发数学学习的好奇心与求知欲.教学过程中学生能积极参与数学学习活动,积极交流合作,体验数学活动的乐趣.

  • 北师大初中数学九年级上册概率与游戏的综合运用2教案

    三、典型例题,应用新知例2、一个盒子中有两个红球,两个白球和一个蓝球,这些球除颜色外其它都相同,从中随机摸出一球,记下颜色后放回,再从中随机摸出一球。求两次摸到的球的颜色能配成紫色的概率. 分析:把两个红球记为红1、红2;两个白球记为白1、白2.则列表格如下:总共有25种可能的结果,每种结果出现的可能性相同,能配成紫色的共4种(红1,蓝)(红2,蓝)(蓝,红1)(蓝,红2),所以P(能配成紫色)= 四、分层提高,完善新知1.用如图所示的两个转盘做“配紫色”游戏,每个转盘都被分成三个面积相等的三个扇形.请求出配成紫色的概率是多少?2.设计两个转盘做“配紫色”游戏,使游戏者获胜的概率为 五、课堂小结,回顾新知1. 利用树状图和列表法求概率时应注意什么?2. 你还有哪些收获和疑惑?

  • 北师大初中数学九年级上册用频率估计概率1教案

    (1)请估计:当n很大时,摸到白球的频率将会接近(精确到0.1);(2)假如你摸一次,估计你摸到白球的概率P(白球)=;(3)试估算盒子里黑球有多少个.解:(1)0.6(2)0.6(3)设黑球有x个,则2424+x=0.6,解得x=16.经检验,x=16是方程的解且符合题意.所以盒子里有黑球16个.方法总结:本题主要考查用频率估计概率的方法,当摸球次数增多时,摸到白球的频率mn将会接近一个数值,则可把这个数值近似看作概率,知道了概率就能估算盒子里黑球有多少个.三、板书设计用频率估计概率用频率估计概率用替代物模拟试验估计概率通过实验,理解当实验次数较大时实验频率稳定于理论频率,并据此估计某一事件发生的概率.经历实验、统计等活动过程,进一步发展学生合作交流的意识和能力.通过动手实验和课堂交流,进一步培养学生收集、描述、分析数据的技能,提高数学交流水平,发展探索、合作的精神.

  • 北师大初中数学九年级上册正方形的判定2教案

    三:巩固新知1、判断对错:(1)如果一个菱形的两条对角线相等,那么它一定是正方形. ( )(2)如果一个矩形的两条对角线互相垂直,那么它一定是正方形.( )(3)两条对角线互相垂直平分且相等的四边形,一定是正方形. ( )(4)四条边相等,且有一个角是直角的四边形是正方形. ( )2、已知:点E、F、G、H分别是正方形ABCD四条边上的中点,并且E、F、G、H分别是AB、BC、CD、AD的中点.求证:四边形EFGH是正方形.3、自己完成课本P23的议一议四、小结1.正方形的判定方法.2.了解正方形、矩形、菱形之间的联系与区别,体验事物之间是相互联系但又有区别的辩证唯物主义观点.3.本节的收获与疑惑.

  • 北师大初中数学九年级上册用树状图或表格求概率1教案

    由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P(两次摸出的球都是白球)=26=13;(2)列表如下:第一次第二次 白1 白2 红白1 (白1,白1) (白2,白1) (红,白1)白2 (白1,白2) (白2,白2) (红,白2)红 (白1,红) (白2,红) (红,红)由上表可知,共有9种结果,且每种结果是等可能的,其中两次摸出白球的结果有4种,所以P(两次摸出的球都是白球)=49.方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.三、板书设计用树状图或表格求概率画树状图法列表法通过与学生现实生活相联系的游戏为载体,培养学生建立概率模型的思想意识.在活动中进一步发展学生的合作交流意识,提高学生对所研究问题的反思和拓展的能力,逐步形成良好的反思意识.鼓励学生思维的多样性,发展学生的创新意识.

上一页123...777879808182838485868788下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!