【类型四】 含整数指数幂、零指数幂与绝对值的混合运算计算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分别根据有理数的乘方、零指数幂、负整数指数幂及绝对值的性质计算出各数,再根据实数的运算法则进行计算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法总结:熟练掌握有理数的乘方、零指数幂、负整数指数幂及绝对值的性质是解答此题的关键.三、板书设计1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减.2.零次幂:任何一个不等于零的数的零次幂都等于1.即a0=1(a≠0).3.负整数次幂:任何一个不等于零的数的-p(p是正整数)次幂,等于这个数p次幂的倒数.即a-p=1ap(a≠0,p是正整数).从计算具体问题中的同底数幂的除法,逐步归纳出同底数幂除法的一般性质.教学时要多举几个例子,让学生从中总结出规律,体验自主探究的乐趣和数学学习的魅力,为以后的学习奠定基础
问题:2015年9月24日,美国国家航空航天局(下简称:NASA)对外宣称将有重大发现宣布,可能发现除地球外适合人类居住的星球,一时间引起了人们的广泛关注.早在2014年,NASA就发现一颗行星,这颗行星是第一颗在太阳系外恒星旁发现的适居带内、半径与地球相若的系外行星,这颗行星环绕红矮星开普勒186,距离地球492光年.1光年是光经过一年所行的距离,光的速度大约是3×105km/s.问:这颗行星距离地球多远(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.问题:“10×105×107×102”等于多少呢?二、合作探究探究点:同底数幂的乘法【类型一】 底数为单项式的同底数幂的乘法计算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)mn+1·mn·m2·m.解析:(1)根据同底数幂的乘法法则进行计算即可;(2)先算乘方,再根据同底数幂的乘法法则进行计算即可;(3)根据同底数幂的乘法法则进行计算即可.
解析:(1)先把第二个分式的分母y-x化为-(x-y),再把分子相加减,分母不变;(2)先把第二个分式的分母a-b化为-(b-a),再把分子相加减,分母不变.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法总结:分式的分母互为相反数时,可以把其中一个分母放到带有负号的括号内,把分母化为完全相同.再根据同分母分式相加减的法则进行运算.三、板书设计1.同分母分式加减法法则:fg±hg=f±hg.2.分式的符号法则:fg=-f-g,-fg=f-g=-fg.本节课通过同分母分数的加减法类比得出同分母分式的加减法.易错点一是符号,二是结果的化简.在教学中,让学生参与课堂探究,进行自主归纳,并对易错点加强练习.从而让学生对知识的理解从感性认识上升到理性认识.
一、说教材1.教材简介《综合性学习:遨游汉字王国》是义务课程标准实验教科书小学语文四年级上册第五组安排的一种学习形式。“遨游汉字王国”是由“汉字真有趣”和“我爱你,汉字”两个板块组成。“汉字真有趣”分别从字谜、有趣的谐音、汉字小笑话、汉字的起源等方面揭示了汉字的神奇性和趣味性。“我爱你,汉字”分别从汉字的演变、错别字的危害、汉字的书法艺术、汉字的魅力等方面,让学生了解中华汉字的灿烂文化。2.教学目标综合性学习是新课标对学生综合实践性学习活动重视的具体体现。它相对于学生来说是一种新的教学形式。通过本组的学习,学生可以了解到汉字历史的悠久,知道汉字记录并承载着中华的文明;同时还让学生清楚地看到汉字在今天同样具有强大的生命力,明白汉语如今在世界上影响的逐步扩大,从而激发学生学习汉字的兴趣和对祖国语言文字的热爱。根据本组教学的要求,结合实践活动的特点,联系学生的实际,我在摸索中制定了第一课时的教学目标:a、让学生感受汉字的音美、形美、意美。b、激发起学生探究汉字的欲望。c、让学生能根据兴趣爱好科学合理分组、分工,并能顺利开展活动。3.教学重点:让学生感受汉字的奇、趣、美,激发起学生的探知欲。
准备:数字卡 棋盘 不同颜色的棋子 旋转六面体 各色旗 扑克牌 玩法:每组5名幼儿,一幅棋盘,每位幼儿一套1——7的扑克牌,每名幼儿持一粒不同颜色的棋子,将各自的棋子放在起点,按照自己的标志次序轮流掷旋转六面体,掷出数字几,就向前走几步,如果走到没有图案的格内,就让下一位幼儿掷旋转六面体;如果走到有图案的格子内,就大声说出图案的数量,并向其他幼儿提问该数字和哪一个数字合起来是8,然后与同伴一起从自己的数字卡中拿出相应的数字卡,拿对的幼儿向前走一步,拿错的幼儿原地不动,看谁先走到终点,谁就在城堡的最底层插一面与自己棋子颜色相同的彩旗。游戏反复进行,谁的彩旗第一个到达城堡的顶端,谁就取得胜利。
例7 用描述法表示抛物线y=x2+1上的点构成的集合.【答案】见解析 【解析】 抛物线y=x2+1上的点构成的集合可表示为:{(x,y)|y=x2+1}.变式1.[变条件,变设问]本题中点的集合若改为“{x|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全体实数.变式2.[变条件,变设问]本题中点的集合若改为“{y|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{ y| y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全体实数.解题技巧(认识集合含义的2个步骤)一看代表元素,是数集还是点集,二看元素满足什么条件即有什么公共特性。
二、存在的主要问题(一)积极主动性不强。干事创业、自我加压的干劲不够,与各部门、子公司协调对接的积极性、主动性不够,争先创优、比拼赶超的拼搏度不够。(二)参谋助手较为被动。作为综合枢纽部门,前瞻性不够,研判性不够,应急应变也相对欠缺,参谋助手发挥有限。三、下步工作思路(一)高水平协调。以服务领导、服务集团、服务东城的“三服务”为出发点和落脚点,做好总调度,及时掌握动态,加强领导、部门和子公司之间的沟通联系,形成协同配合、整体联动的良好局面。办文上,严把程序关、格式关、文字关,文字表达力求“准、实、新”,切实提高集团办文质量。办会上,根据事项紧迫性、重要性程度,弹性会议时长,减少“文山会海”。办事上,分清主次和轻重缓急,有序协调,统筹推进,帮助领导从一般性事务中解脱出来,集中精力把大局、谋方向、促发展。
学生们开始时会一时无法适应正规的双语学习,我们就让他们更自由一些:可以用轻松愉快的教学方式赢得学生们的喜爱,改变传统的教学模式,让课堂更加有趣味性,适合学生们的特点。对于刚接触汉语的学生来说,需要老师提出一定的要求,应该知道作为学生所要达到的标准,每一堂课,我都会使用新学的教学理念运用于课堂,给每一位学生讲清楚该怎样做才是最好的;只要每一天学生都在努力、在进步,我们就应该很欣慰!对于一直生活在母语环境下的学生来说,一下子去适应双语环境,在我们看来的确很困难。然而,要知道学生们的语言接受能力极强,他们很快会接受双语环境。
3、学生独立完成说想法:“说说你是怎么想的?怎么算的?”此处训练了孩子的语言表达能力,同时老师也能够了解学生对连加、加减混合运算的学习情况,以便及时调整后面的教学。4、试一试:“现在我们来到了数学王国的大门口,可是门上有密码锁,它的密码分别是四道数学题,我们得把题做对了才能进去,让我们一起努力吧。”此处设计了一个密码锁,目的是为了调动学生的学习热情,吸引孩子的注意力。第一题让学生小组合作用教具动手操作,边摆边说边算,获得加减混合运算顺序的感性体验。第二题上升一个难度,让学生边说边算。第三、第四题再提升一个难度,让学生直接计算。以此来训练孩子的计算能力,帮助孩子从直观到抽象,初步训练了孩子的逻辑思维能力,提高了孩子的计算能力。
(二)导学释疑在这一环节中,我首先用课件出示例题“智慧老人准备给客厅铺上地板,算一算智慧老人客厅面积有多大?”,创设了智慧老人家铺地板遇到困难请同学们帮忙的情境,引导学生通过以下三方面展开独学、对学、群学,以达成学习目标:1.我们不妨先来估算一下客厅的面积大约是多少?(设计估一估的教学活动,并不是蜻蜓点水,而是在学生思考之后,有意识的引导,从而培养学生的估算意识,同时也是对后面精算的解决方法的一个铺垫和启示。)2.独立思考,小组交流,展示汇报学习情况(这是本节课的重要环节,在学生解决组合图形面积时,重视把学生的思维过程充分暴露出来,首先,学生通过自己独立思考,得出解决问题的方法;然后通过小组和全班交流,使学生学会了别人的方法;最后,从这些方法中,比较、反思、知道最简便的方法。)3.看教科书88页内容。(一方面可以让学生对照教科书检查自己的探究过程,另一方面可以让学生对所学知识进行内化整理)
一、教材分析(一)教材的地位和作用:本节课是北师大七年级(上)义务教育课程标准实验教材第2章第6节第一课时的内容。它是学生在已经掌握有理数加法、减法、乘法、除法、乘方以后进行学习的。它是建立在有理数的有关概念和各种运算的意义及法则的基础上进行的综合性运算。它是本章的重点之一,是以上各种运算的继续和发展,对学生运算能力和数学学习能力的培养,有着十分重要的意义,同时也是初中数学运算的重要内容之一,是后续学习的基础。(二)教学目标的确立:参照义务教育阶段《数学课程标准》的要求,确定本节课的教学目标如下:1、知识技能目标:(1)掌握有理数的混合运算法则及运算顺序。(2)熟练的进行有理数的混合运算。2、能力目标:培养学生的观察能力和运算能力。3、情感与态度目标:(1)培养学生在计算前认真审题,确定运算顺序,计算中按步骤审慎进行,并养成验算的良好的学习习惯。
5、总结学生解题过程中存在的问题,并指导并纠正、分析根本原因。6、通过演示法给学生演示完整、详细和规范的解题过程。7、总结有理数的运算顺序和方法。先让学生自己总结运算顺序,培养学生自己思考的能力,然后教师进行纠正。等这个过程结束之后,再给出完整的运算顺序和方法。8、出示练习题,巩固所学知识,教师及时指正。9、最后布置课后作业题。四、教学评价本节课我注重体现“以教师为主导、学生为主体、以学生发展为本的教学思想”。1、通过具体的题目引入,让学生先以自己的知识体系解决问题,在这过程中发现问题、归纳总结原因,并予以解决。一方面复习前面所学的基本运算,另一方面完善学生的知识体系。2、培养学生自主学习与探究的能力、分析与解决问题的能力。
1.掌握有理数混合运算的顺序,并能熟练地进行有理数加、减、乘、除、乘方的混合运算.2.在运算过程中能合理地应用运算律简化运算.一、情境导入在学完有理数的混合运算后,老师为了检验同学们的学习效果,出了下面这道题:计算-32+(-6)÷12×(-4).小明和小颖很快给出了答案.小明:-32+(-6)÷12×(-4)=-9+(-6)÷(-2)=-9+3=-6.小颖:-32+(-6)÷12×(-4)=-9+(-6)×2×(-4)=39.你能判断出谁的计算正确吗?二、合作探究探究点一:有理数的混合运算计算:(1)(-5)-(-5)×110÷110×(-5);(2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)题是含有减法、乘法、除法的混合运算,运算时,一定要注意运算顺序,尤其是本题中的乘除运算.要从左到右进行计算;(2)题有大括号、中括号,在运算时,可从里到外进行.注意要灵活掌握运算顺序.
1、掌握有理数混合运算法则,并能进行有理数的混合运算的计算。2、经历“二十四”点游戏,培养学生的探究能力[教学重点]有理数混合运算法则。[教学难点]培养探索思 维方式。【教学过程】情境导入——有理数的混合运算是指一个算式里含有加、减、乘、除、乘方的多种运算.下面的算式里有哪几种运算?3+50÷22×( )-1.有理数混合运算的运算顺序规定如下:1 先算乘方,再算乘除,最后算加减;2 同级运算,按照从左至右的顺序进行;3 如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。 加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方(今后将会学到)叫做第三级运算。注意:可以应用运算律,适当改变运算顺序,使运算简便.合作探究——
本节课开始时,首先由一个要在一块长方形木板上截出两块面积不等的正方形,引导学生得出两个二次根式求和的运算。从而提出问题:如何进行二次根式的加减运算?这样通过问题指向本课研究的重点,激发学生的学习兴趣和强烈的求知欲望。本节课是二次根式加减法,目的是探索二次根式加减法运算法则,在设计本课时教案时,着重从以下几点考虑:1.先通过对实际问题的解决来引入二次根式的加减运算,再由学生自主讨论并总结二次根式的加减运算法则。2.四人小组探索、发现、解决问题,培养学生用数学方法解决实际问题的能力。3.对法则的教学与整式的加减比较学习。在理解、掌握和运用二次根式的加减法运算法则的学习过程中,渗透了分析、概括、类比等数学思想方法,提高学生的思维品质和兴趣。
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
(一)观图激趣、设疑导入 1.出示课件-情境图师:上节课我们初步学习了里程表的知识,这节课我们接着来研究里程表中的数学问题。板书课题:里程表(二)师:淘气的叔叔是出租车司机。淘气为了记录叔叔每天跑的路程,淘气在叔叔星期一早上出车时,里程表的读数是35千米。淘气记录了叔叔周一至周五每天回家时的里程表读数。(课件展示里程表)。(二)探究新知1.例1(1)师:请同学们认真观看淘气记录的叔叔的周一到周五的里程表,想一想,说一说你知道了哪些数学信息?生:我发现了叔叔周一行了160千米。 师:同学们他说找到数学信息对吗?生:160千米不是星期一的行驶里程,应该是星期一晚上里程表上的读数。 星期二里程表上的读数是350,。生:。。。。师:同学们找的数学信息非常多,非常全面。(2)小组讨论交流:淘气根据题意画了一个图,你看懂了吗?与同伴说一说。
在中国,大家都知道两个大名鼎鼎的科学家,他们分别是杨振宁和邓稼先。两个人从小就是好朋友。杨振宁后来留学美国,加入了美国国籍。1964年,我国第一颗原子弹爆炸成功,杨振宁为此感到异常激动。1971年,杨振宁从美国回到祖国,与阔别了整整20多年的好朋友邓稼先见面,杨振宁很想知道邓稼先是否参与了中国第一颗原子弹的研究,于是间接地问:“听说中国研究原子弹的专家中有一个美国人,是吗?”邓稼先感到很为难,于是想出了一个既没有泄露国家机密又没有欺骗朋友的办法,对杨振宁说:“我以后再告诉你吧!”。邓稼先就是这样一个诚实的人,无论是对国家,还是对朋友,都是如此。我们懂得了为什么要提倡诚实守信的道理之后,我们还要知道怎样做到诚实守信。要做到诚实守信,需要我们从现在做起,从自己做起,从日常的生活小事做起,人人讲信用,时时讲信用,共同构造一个信用的社会。