书法艺术的繁荣期,是从东汉开始的东汉时期出现了专门的书法理论著作,最早的书法理论提出者是东西汉之交的扬雄第一部书法理论专著是东汉时期崔瑗的《草书势》汉代书法家可分为两类:一类是汉隶书家,以蔡邕为代表一类是草书家,以杜度、崔瑗、张芝为代表,张芝被后人称之为“草圣”最能代表汉代书法特色的,莫过於是碑刻和简牍上的书法东汉碑刻林立,这一时期的碑刻,以汉隶刻之,字型方正,法度谨严、波磔分明此时隶书已登峰造极汉代创兴草书,草书的诞生,在书法艺术的发展史上有著重大意义它标志著书法开始成为一种能够高度自由的抒发情感,表现书法家个性的艺术草书的最初阶段是草隶,到了东汉时期,草隶进一步发展,形成了章草,后由张芝创立了今草,即草书
请写出 推理过程:∵ ,在两边同时加上1得, + = + .两边分别通分得: 思考:请仿照上面的方法,证明“如果 ,那么 ”.(3) 等比性质:猜想 ( ),与 相等吗?能 否证明你的猜想?(引导学生从上述实例中找出证明方法)等比性质:如果 ( ),那么 = .思考:等比性质中,为什么要 这个条件?三、 巩固练习:1.在相同时刻的物高与影长成比例,如果一建筑在地面上影长为50米,高为1.5米的测竿的影长为2.5米 ,那么,该建筑的高是多少米?2.若 则 3.若 ,则 四、 本课小结:1.比例的基本性质:a:b=c:d ;2. 合比性质:如果 ,那么 ;3. 等比性质:如果 ( ),五、 布置作业:课本习题4.2
解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED=∠BAE+∠CDE.理由如下:过点E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=32∠AFD.方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等;性质2:两条平行线被第三条直线所截,内错角相等;性质3:两条平行线被第三条直线所截,同旁内角互补.平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学
若a,b,c都是不等于零的数,且a+bc=b+ca=c+ab=k,求k的值.解:当a+b+c≠0时,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,则k=2(a+b+c)a+b+c=2;当a+b+c=0时,则有a+b=-c.此时k=a+bc=-cc=-1.综上所述,k的值是2或-1.易错提醒:运用等比性质的条件是分母之和不等于0,往往忽视这一隐含条件而出错.本题题目中并没有交代a+b+c≠0,所以应分两种情况讨论,容易出现的错误是忽略讨论a+b+c=0这种情况.三、板书设计比例的性质基本性质:如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性质:如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab经历比例的性质的探索过程,体会类比的思想,提高学生探究、归纳的能力.通过问题情境的创设和解决过程进一步体会数学与生活的紧密联系,体会数学的思维方式,增强学习数学的兴趣.
解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形矩形的定义:有一个角是直角的平行四边形 叫做矩形矩形的性质四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.
1. _____________________________________________2. _____________________________________________你会计算菱形的周长吗?三、例题精讲例1.课本3页例1例2.已知:在菱形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH.四、课堂检测:1.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,菱形的边长是________cm.2.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.3.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 4.已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则别一条对角线长为________厘米.5.菱形的两条对角线把菱形分成全等的直角三角形的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个6.在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积
初读课文,学习字词。 1.提出读书要求:默读课文,一边读一边画出不认识的字和不理解的词,并借助词典等学习工具书理解。 2.教师检查学生学习情况。 (1)检查生字读音。 小丘( qiū)渲染(xuàn )迂回( yū)蒙古包( měng ) 襟飘带舞( jīn )鄂温克(è) (2)指导易混淆的字。 “襟”是左右结构,左边是“衤”,与衣服有关,表示衣服胸前的部分。 “涩”是左右结构,右边下面是“止”,不能写成“上”。 “裳”下面是“衣”,与衣服有关。 “微”:中间部分不能少一横。 (3)理解较难的词语。 ①联系上下文理解词语。 草原上行车十分洒脱,只要方向不错,怎么走都可以。 “洒脱”的意思是:潇洒自然,不拘束。这个词语反映了草原的广阔无边。 ②理解“襟飘带舞”一词的意思,可以出示蒙古族鲜艳的服装来分析,意思是:衣襟和裙带随风舞动。 ③“翠色欲流”一词可以从难字入手理解,比如“欲”在这里表示“将要”的意思,“翠色欲流”就是绿得太浓了,将要流下来,写出了草原的绿,是充满生命力的。 ④鄂温克:我国少数民族之一,聚居在内蒙古自治区的东北部。
教材简析 《灰雀》这篇课文记叙了列宁在莫斯科郊外养病期间爱护灰雀的故事,反映了列宁爱鸟,更爱诚实的孩子。 全文共13个自然段。第1自然段讲列宁在郊外养病期间,每天都到公园散步,他非常喜欢公园里那:只灰雀。第2—10自然段讲有一天,列宁发现那只胸脯深红的灰雀不见,以为它冻死了,感到很惋惜。小男孩不敢告诉列宁灰雀没有死,只是坚定地说,灰雀会飞回来的。第11~13自然段讲第二天,列宁果然又看见了那只灰雀,但他没有再问那个男孩,因为他已经知道男孩是诚实的。 课文以人物对话为主线,既写出了列宁对孩子的教育过程,又写了小男孩心理认识过程。人物的内心活动外化为语言,二者相互交错,推动情节发展,并有机地融合在一起。
活动目标: 1、知道自己身体的不同部位的不同作用,学习运用身体不同部位移动身体,提高身体的灵活性和身体动作的表现力。 2、引导幼儿积极探索新的动作,从不同角度思考,独立或合作设计完成动作要求,发展幼儿创新技能。 3、在活动中让幼儿体验游戏的乐趣,培养合作互助的精神。 活动准备:音乐磁带、各类数字卡装扮的数字园,固定1.4米高的绳索,以山坡(上、下)、小河、雷区,电网的标志图分放在绳索下的场地上。活动重点:想办法运用不同部位移动身体活动难点:设计并完成脚不沾地移动身体活动过程:一、准备活动 1、在音乐伴奏下指导幼儿进行走、跑、跳、蹲、扭动身体、钻、爬等基本动作训练。 2、情景导入:“我们的小脚累了,让它们休息一下吧。”幼儿自由地在教师身边坐下。 3、提出问题:“刚才我们都用了身体哪些部位做了什么动作?”(脚走跑、腿弯、屈膝、手动、腰弯、臀扭等)师生共同小结:身体真灵巧,脚能走,腰能弯,手能撑……
1.了解少数民族人民的民居、服饰、工艺品、民族活动、风俗习惯、文化艺术等,培养幼儿热爱少数民族的情感。 2.知道我们的祖国是多民族国家,各族人民勤劳、智慧、能歌善舞。 3、增进家园合作,密切家园联系。 活动准备: 1. 选好参观景点、订好门票。 2. 请家长于10月28日上午9:00来幼儿园。 3. 食品和水(一人一份)。 4. 讲清楚活动要求、规则以及需要家长协助的工作。
活动目标: 1.引导幼儿观察几种鸟的外形特征、习性和本领,初步了解鸟和人类的关系。 2.通过幼儿想保护小鸟的各种办法,在参与活动中激发幼儿爱鸟的情感。 活动准备: 1.发动幼儿和家长搜集关于鸟的资料和图片,了解关于鸟的知识。 2.鸟叫的录音,笼养小鸟。啄木鸟、信鸽、猫头鹰等几种鸟的标本。 3.课件:群鸟飞舞、唱歌,啄木鸟、信鸽、猫头鹰几种鸟活动习性和本领的动画。 活动过程: 1.听声音,激趣导入。 “今天,有许多客人要来和我们做朋友,听一听它的声音,猜猜它是谁?”播放小鸟叫声的录音。幼儿猜出后,请幼儿说一说都见过那些鸟。 2.把客人请出来:教师出示几种鸟的标本,做鸟飞动作把鸟标本分别放到各组中间,引导幼儿进行观察,了解鸟的外形特征。
准备:1.各色蜡光纸,糨糊,剪刀,托盘,抹布,铅笔等。2.累加组合剪纸作品一幅(见图1),其中一只蝴蝶的花纹可以分离并移动。3.背景音乐,“三只蝴蝶”背景图(图上有幼儿画的若干花朵)。4.欣赏剪花娘子库淑兰的剪纸作品,丰富有关经验。 过程:1.回忆已有经验,萌发活动兴趣。师:我们听过剪花娘子库淑兰奶奶的故事,也欣赏过库淑兰奶奶的剪纸作品,还记得是什么作品吗?库淑兰奶奶这幅作品是用什么方法做的?幼:梅香骑马。幼:用的是累加剪纸的方法。
活动准备: 音乐、树、枫叶 活动过程: 1、谈话导入 (1)小朋友看看,这是什么呀?(扇子) (2)那扇子一扇感觉有什么吹在脸上?(风) (3)请小朋友想一想,风儿一吹,会有什么飘下来呢?(···) 好,让我们一起来听一听,风儿到底带来了什么? 2、播放音乐,教师徒手表演音乐。 3、教师清唱结合枫叶分段表演音乐,帮助幼儿理解歌词。 师:是什么飘下来啦?(树叶)(出示树)那小朋友知不知道有几片树叶飘下来?何老师也不记得了,让我们一起来问一下风儿!(唱)风儿你带什么来?叮!(从树上拿一片树叶,问:“几片树叶”)一片树叶飘下来,叮!再问这边,(唱)风儿你带什么来,叮、叮,两片树叶飘下来···风儿你带什么来,树叶全都掉下来!
2在以自身为中心区分左右的基础上,学会以客体为中心区分左右3培养幼儿的空间方位感,提高思维的灵活性二活动准备木偶,图示三活动过程(一)通过游戏,幼儿复习以自我为中心区分左右师:今天我们要玩一个游戏,当我说左手你们就伸出你们的左手,当我说右耳朵的时候你们就用手指着你们的右耳朵
晨会:(谈话)高高兴兴上幼儿园。活动目标:1、稳定幼儿情绪,鼓励幼儿能高高兴兴上幼儿园。2、熟悉幼儿园环境、老师,激发幼儿愿意上幼儿园的情感。活动准备:1、各种桌面玩具、滚动小车等。2、熟悉每位幼儿的姓名、了解其个性。活动重点: 通过游戏活动,让幼儿喜爱上幼儿园。活动难点: 让幼儿愿意上幼儿园。
2、发展幼儿的观察力和绘画表现能力。3、加深幼儿对老师的热爱之情。二、活动准备:1、请配班老师配合上课。2、带花边的纸或一次性纸餐盘若干、彩笔。三、活动过程:1、引出教师节,导入活动,引起幼儿兴趣。教师:小朋友,我们班上有几位老师?你们怎样称呼她们?明天就是教师节了,今天我们给老师画张像,画好后,送给老师好不好?
2、了解测量在生活中的应用,激发幼儿参与测量的兴趣。3、愿意与同伴合作交流,解决问题。活动准备:1、幼儿已有初步的测量经验。2、尺子、绳子、软尺、吸管、小棒、短积木、铅笔、筷子、纸卡段、盒子、书等物品。3、记录表、水彩笔、磁性板。活动过程:一、引题:提出任务今天小朋友来当“小小测量员”,用三种不同的工具来测量相同的一条边,并把测量结果记录下来。
2、培养幼儿动手操作能力、协作能力、团队协作能力。3、复习10以内的数的顺序及找规律。活动准备:每个幼儿一个小猴头饰、桃子和苹果图片、桌子、画有飞机和汽车的卡片各一大张并分成和幼儿人数的一半的份数、玩具若干、录了《猴哥》音乐的磁带、小鸟头饰一个、老虎头饰两个。活动过程:1、猴妈妈和孩子们在睡梦中醒来, 猴妈妈带着孩子们在“猴哥”的音乐声中进行晨练。(做热身运动)2、 孩子们都饿了,妈妈带着孩子们到树林去摘果子(练习跳高)。在孩子们吃果子时,一只小鸟飞来说道:“猴妈妈,听说五台山上有宝藏,许多小动物都去寻宝去了,你们也快去吧!”然后飞走了。
2.鼓励幼儿用(目测、计量、数数、折叠)等多种方法大胆去尝试、探索二等份的多种分法。3.引导幼儿大胆讲述操作过程和结果。活动材料;教具:天线宝宝两个、蛋糕一块、二等份图卡10张学具:长方形纸、剪刀、尺、毛线、包装纸;吸管、圆片、三角形、正方形;硬币、蚕豆、雪花片、纽扣、小碗;量杯6个、天平、蛋糕、番茄、豆腐干、刀子、菜板、橡皮泥等。活动过程:1.幼儿将长方形纸进行二等份。 (1)班上请来了两位小客人,看看是谁?它们还带来了最喜欢吃的蛋糕,可是只有一块蛋糕,两人都想吃,怎么办?(2)请一位幼儿动手试一试,有什么办法知道这两块一样大呢?(重叠)(3)教师小结:把蛋糕分成一样大的两份,这种方法叫二等份。想想蛋糕除了这样分,还有不一样的分法吗?每位小朋友面前都有一张像蛋糕一样的长方形纸,请你想出和别人不同的方法进行二等份?(4)幼儿动手操作,展示幼儿分法。(边与边对折、对角折)请幼儿比较一下,分出来的图形和原来的图形有什么变化?(5)教师小结:小朋友用了对折、对角折对长方形纸进行了二等份,把它分成了两份一样大的图形。
五、活动背景:健康的心灵是我们幸福的源泉,只有接纳自己、喜欢自己、充满自信才有健康的心灵。然而,随着社会的发展,中学生中存在着许多的心理健康问题。为更好地对中学生进行心理健康教育、更好地优化学生的心理素质,促进学生的心理健康成长。更好地引导同学们积极关注自我发展,自觉维护和提升心理健康水平,让同学们的心理朝着阳光健康的方向发展,我们特开展以“心灵护航,快乐成长”为主题的中学生心理健康教育主题班会