一、情境导入神舟十号是中国神舟号系列飞船之一,主要由推进舱(服务舱)、返回舱、轨道舱组成.神舟十号在酒泉卫星发射中心“921工位”,于2013年6月11日17时38分02.666秒发射,由长征二号F改进型运载火箭(遥十)“神箭”成功发射.在轨飞行十五天左右,加上发射与返回,其中停留天宫一号十二天,共搭载三位航天员——聂海胜、张晓光、王亚平.6月13日与天宫一号进行对接.6月26日回归地球.要读懂这段报导,你认为要知道哪些名称和术语的含义?二、合作探究探究点一:定义 下列语句属于定义的是()A.明天是晴天B.长方形的四个角都是直角C.等角的补角相等D.平行四边形是两组对边分别平行的四边形解析:作出正确选择的关键是理解定义的含义.A是对天气的预测,B是描述长方形的性质,C是描述补角的性质.只有D符合定义的概念.故选D.方法总结:定义指的是对术语和名称的含义的描述,是对一个事物区分于其他事物的本质特征的描述,而不是对其性质的判断.
解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.
② 命题的含义:判断一件事情的句子,叫做命题,如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.活动目的:通过课后的总结,使学生对定义、命题等概念有更清楚的认识,让学生在头脑中对本节课进行系统的归纳与整理.教学效果:学生在有了前面对定义、特别是命题概念的学习后,能了解命题的结构,以及哪些是命题,使学生对命题的学习有了清楚的认识。第五环节 课后练习学习小组搜集八年级数学课本中的新学的部分定义、命题,看谁找得多.四、教学反思本节课的设计具有如下特点:(1)采用了“小品表演”的形式引入新课,意在激起学生对数学的兴趣,让学生知道,数学不是枯燥无味的。并能从表演中不同的人对“黑客”这个名词的不同理解更好地悟出“定义”的含义。
[教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.
我想,收到短信的人心里一定是暖暖的!“吱吱吱……”我又觉得浑身一震,主人的朋友B的短信又来了,我欢快地唱起了歌儿,提示主人接收短信:“请用1秒钟忘记烦恼,用一分钟想象快乐,用一小时与你喜欢的人度过,用一辈子关怀你爱的人和爱你的人,然后用一个微笑来接收我传递给你的祝福,愿你永远开心!”多么温馨的短信,多么暖人的祝福,瞧,主人心里乐开了花……我,难道不是社会进步的象征吗?不是社会和谐的见证吗?本文采用拟人手法来写,生动地说明了手机的特点、用途,介绍了手机发展和改进过程,条理清楚,语言准确。文章恰当地运用了举例子、做比较的说明方法,使读者对说明的事物有鲜明深刻的印象。还有一大亮点就是幽默诙谐、流畅自然的语言,颇引人注目。小作者以手机的口吻叙说生活中人与手机相处的点点滴滴,读来不禁有身临其境之感。结尾展望了手机发展的美好未来,给人以憧憬。
【教学目标】知识与技能目标:掌握对数函数的图像及性质;过程与方法目标:通过图像特征的观察,理解对数函数的性质,并从中体会从具体到一般及数形结合的方法;情感态度与价值观目标:在教学活动中培养学生的学习兴趣,感受数学知识的应用价值,体验知识之间的内在逻辑之美。【教学重点】对数函数的图像及性质。【教学难点】对数函数性质与应用。
二、对数函数的概念1. 计算对数的值 N1248x 思路(引入对数的概念):让学生依次计算、、、、、、,体会每一个真数都能找到唯一一个对数与之对应,这就形成了一个函数,我们称这个函数为对数函数。
(1)本周哪一天河流水位最高,哪一天河流水位最低,它们位于警戒水位之上还是之下,与警戒水位的距离分别是多少?(2)与上周末相比,本周末河流的水位是上升还是下降了?解析:(1)先规定其中一个为正,则另一个就用负表示.理解表中的正负号表示的含义,根据条件计算出每天的水位即可求解;(2)只要观察星期日的水位是正负即可.解:(1)前两天的水位是上升的,第1天的水位是+0.20米;第2天的水位是+0.20+0.81=+1.01米;第3天的水位是+1.01-0.35=+0.66米;第4天的水位是+0.66+0.13=+0.79米;第5天的水位是0.79+0.28=+1.07米;第6天的水位是1.07-0.36=+0.71米;第7天的水位是0.71-0.01=+0.7米;则水位最低的是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米,则本周末河流的水位上升了0.7米.方法总结:解此题的关键是分析题意列出算式,用的数学思想是转化思想,即把实际问题转化成数学问题.探究点二:有理数的加减混合运算在生活中的其他应用
刘义庆(403~444)南朝宋著名文学家,字季伯,彭城(今江苏徐州)人,南朝宋宗室,武帝时袭封临川王。官至兖州刺史、都督加开府仪同三司。自幼才华出众,爱好文学,喜纳文士,其撰笔记小说集《世说新语》,是六朝志人小说的代表。记叙汉末至东晋士族阶层人物的言谈轶事,生动形象地反映出当时士族的生活方式与精神面貌。语言精炼、生动传神,对后世小说影响极大。其中“周处除三害”、“望梅止渴”、“击鼓骂曹”等故事,成为后世戏曲小说的素材,“新亭对泣”、“子猷献戴”等也成为后世诗文常用的典故。梁刘孝标作注,旁征博引,为后人所重。另有《幽明录》,今佚。鲁迅《古小说钩沉》辑其佚文200余条,皆记诡异之事。
国旗下的讲话:《为了心中的价值——勇往直前》亲爱的老师们、同学们:大家早上好!我是高XX级10班的xxx。首先我想问在场的朋友们几个问题:大家认识贝克汉姆或者梅西吗?大家喜欢看世界杯吗?那为什么有这么多的朋友为足球如此着迷呢?到底是什么让我们疯狂爱上足球这项运动呢?今天就让我们来探讨这一问题,所以我讲话的主题是《为了心中的价值——勇往直前》本届足球市运会已经在前天落下了帷幕。而我们遂中足球队的好男儿,也一路过关斩将,成功打进四强。在此,我提议,让我们以最热烈的掌声向他们表示衷心的祝贺与感谢!当大家为他们所取得的成绩而祝贺的时候,是否又知道比赛背后的种种感动呢?第一场比赛,上天偏偏和我们的队员开了一个玩笑。在点球大战时,我们的球队因一球之差,输给了大英。比赛结束时,大家都很失落,然后他们很快振作了起来,一起总结经验、研究战术,在第二天的两场比赛中,两战告捷。在周六对阵本届市运会最强队伍遂宁二中省运队的时候,即使是面对如此强大的对手,也没有一个人退缩,他们依然肩并着肩大声喊出了他们的誓言:我们是遂中足球队!我们有信心!我遂中男儿的坚持与信念也赢得了在场所有人的尊重。
2. 学会唱《大鼓与小鼓》这首歌。 重点: 辨别区分声音的强弱。 难点: 会正确表现声音的强弱。 活动准备: 大鼓、小鼓。 活动过程: 1. 用身体动作表现强与弱。如:拍手和点手心,拍手心和拍手背,拍腿和拍肩等。 2. 认识强弱记号。 教师准备两幅图片,上面画有f和p,告诉小朋友f表示强,p表示弱,并用动作表示出来。
【重难点】 重点:了解动物主要是通过声音、行动和气味三种方式传递信息。 难点:了解动物运用气味的联络方式。【活动准备】 知识:课前请幼儿搜集有关动物间联络方式的知识。 物质:各种动物的图片、展板、头饰、课件等。【活动过程】(一)导入:激发兴趣,引出主题。 1.教师口技表演(小鸟叫声),激发兴趣。 过渡语:小鸟虽然不会说话,但它可以用叫声来联络伙伴,那你们想知道其他动物是怎么联络伙伴的吗?今天我就给你们带来了动物交流联络时的录像,让我们一起看一看。 2.观看两种动物的联络方式,引出主题。 提问:蜘蛛遇到危险时,是怎样联络伙伴的? 蜜蜂是怎样跳舞的?我们一起来学学。(摇摆舞,八字舞) 你知道其它动物是怎样联络的? 过渡语:动物之间的联络方式有很多很多,下面就请小朋友和你的小伙伴边看着大图片边交流讨论:其它动物都是怎样联络的。孩子们,请到这边来!(二)展开:了解动物的三种主要联络方式。 1.幼儿自由观看讨论动物图片,发现学习。 2.引导幼儿了解动物主要的三种联络方式。 (1)幼儿交流自己知道的动物的联络方式。 (2)幼儿在充分说的基础上,教师进行动物联络方式的归类。
故线段d的长度为94cm.方法总结:利用比例线段关系求线段长度的方法:根据线段的关系写出比例式,并把它作为相等关系构造关于要求线段的方程,解方程即可求出线段的长.已知三条线段长分别为1cm,2cm,2cm,请你再给出一条线段,使得它的长与前面三条线段的长能够组成一个比例式.解析:因为本题中没有明确告知是求1,2,2的第四比例项,因此所添加的线段长可能是前三个数的第四比例项,也可能不是前三个数的第四比例项,因此应进行分类讨论.解:若x:1=2:2,则x=22;若1:x=2:2,则x=2;若1:2=x:2,则x=2;若1:2=2:x,则x=22.所以所添加的线段的长有三种可能,可以是22cm,2cm,或22cm.方法总结:若使四个数成比例,则应满足其中两个数的比等于另外两个数的比,也可转化为其中两个数的乘积恰好等于另外两个数的乘积.
实验时,幼儿是主体,教师主导。运用了观察法、引导法、亲身体验法、互相交流等方式方法去完成这四个实验。例如:作实验一时,教师提壶把水到入脸盆中,让幼儿观察水的流动;当盆中盛满水后继续到水,盆中的水会是什么样的?观察后让幼儿提出自己的见解,幼儿的主动性得到发挥。例如:做实验四:让幼儿亲自闻一闻水和醋,判断水是没有气味的。幼儿通过亲身体验更能掌握知识。这四个实验的过程针对幼儿的年龄特点做的设计。学习时,幼儿对水产生了浓厚的兴趣,在不自觉中完成了学习水的性质,
(三)成比例线段的概念1、一般地,在四条线段中,如果 等于 的比,那么这四条线段叫做成比例线段。(举例说明)如:2、四条线段a,b ,c,d成比例,有顺序关系。即a,b,c,d成比例线段,则比例式为:a:b=c:d;a,b, d,c成比例线段,则比例式为:a:b=d:c3思考:a=12,b=8,c=6,d=4成比例吗?a=12,b=8,c=15,d=10呢?三、例题解析: 例1、A、B两地的实际距离AB= 250m,画在一张地图上的距离A'B'=5 cm,求该地图的比例尺。例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜边AB=2。求⑴ ,⑵ 四、巩固练习1、已知某一时刻物体高度与其影长的比值为2:7,某 天同一时刻测得一栋楼的影长为30米,则这栋楼的高度为多少?2、某地图上的比例尺为1:1000,甲,乙两地的实际距离为300米,则在地图上甲、乙两地的距离为多少?3、已知线段a,d,b,c是成比例线段,其中a=4,b=5,c=10,求线段d的长。
三、说教法和学法:1、说教法:本节课采用几何画板与电子白板相结合的教学手段,使操作过程形象、直观呈现,以便学生更好的理解。在教学过程中,引导学生去探索,使学生感受到添加辅助线的数学思想,更好地掌握三角形内角和定理的证明及简单的应用,2、说学法:根据本节课特点和学生的实际,在教学过程中给学生足够的时间认真、仔细地动手书写证明过程,使学生的学习落到实处。同时,培养学生科学的学习方法和自信心。四、说教学过程设计教学过程的设计有:1、问题引入新课:七年级已经学习三角形内角和定理内容。这样从已经学过的知识引入,符合学生的认知规律。在拼图活动中发展思维的灵活性、创造性,为下一环节“说理”证明作好准备,使学生体会到数学来源于实践,同时对新知识的学习有了期待。
孩子做了错事,父母不可听之任之,一定要认真处理。必须向孩子严厉指出:什么是应该做的,什么是不能去做的,并要根据孩子错误情节的严重性给予必要的惩罚,让孩子体验到做错事后所引起的不愉快,从而牢记教训。对孩子故意的破坏性错误不能任其发展下去,要认识到孩子的不良习惯不是一天、两天形成的,所以教育也需要一个较长过程,不能性急,帮助孩子逐步明白道理,学会自尊、自律。例如对于孩子某些不良行为,父母可通过施予孩子不愉快的非语言刺激,来减少和控制孩子不良行为的频率,比如:目光注视(以冷峻的目光较长时间的注视孩子)、距离控制(逼近或远离孩子)、轻微的惩罚(拿走孩子喜爱的物品),这样会使孩子对自己的错误行为产生内疚和羞愧,从而减少和消除不良行为发生的次数。
1.了解“两点之间,线段最短”.2.能借助尺、规等工具比较两条线段的大小,能用圆规作一条线段等于已知线段.3.了解线段的中点及线段的和、差、倍、分的意义,并能根据条件求出线段的长.一、情境导入爱护花草树木是我们每个人都应具备的优秀品质.从教学楼到图书馆,总有少数同学不走人行道而横穿草坪(如图),同学们,你觉得这样做对吗?为了解释这种现象,学习了下面的知识,你就会知道.二、合作探究探究点一:线段长度的计算【类型一】 根据线段的中点求线段的长如图,若线段AB=20cm,点C是线段AB上一点,M、N分别是线段AC、BC的中点.(1)求线段MN的长;(2)根据(1)中的计算过程和结果,设AB=a,其它条件不变,你能猜出MN的长度吗?请用简洁的话表达你发现的规律.
(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分线定义).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代换).又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴DF∥BE(内错角相等,两直线平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分线定义),∠ADE=∠1(等量代换).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形内角和为180°及等量代换),即∠A+∠ABC=180°,∴AD∥BC(同旁内角互补,两直线平行).方法总结:解此类题应首先结合图形猜测结论,然后证明.证明两条直线平行,一般先找它们的截线,再求同位角相等(或内错角相等,同旁内角互补)来说明两直线平行.若没有公共截线,则需作出两直线的截线辅助证明.三、板书设计平行线,的判定)判定公理:同位角相等,两直线平行判定定理内错角相等,两直线平行同旁内角互补,两直线平行本节课通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力,逐步掌握规范的推理论证格式.
方法总结:平行线与角的大小关系、直线的位置关系是紧密联系在一起的.由两直线平行的位置关系得到两个相关角的数量关系,从而得到相应角的度数.探究点四:平行于同一条直线的两直线平行如图所示,AB∥CD.求证:∠B+∠BED+∠D=360°.解析:证明本题的关键是如何使平行线与要证的角发生联系,显然需作出辅助线,沟通已知和结论.已知AB∥CD,但没有一条直线既与AB相交,又与CD相交,所以需要作辅助线构造同位角、内错角或同旁内角,但是又要保证原有条件和结论的完整性,所以需要过点E作AB的平行线.证明:如图所示,过点E作EF∥AB,则有∠B+∠BEF=180°(两直线平行,同旁内角互补).又∵AB∥CD(已知),∴EF∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∴∠FED+∠D=180°(两直线平行,同旁内角互补).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性质),即∠B+∠BED+∠D=360°.方法总结:过一点作一条直线或线段的平行线是我们常作的辅助线.