【类型二】 分式的约分约分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根据分式的基本性质把公因式约去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法总结:约分的步骤;(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.三、板书设计1.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法则:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;若只改变其中一个符号或三个全变号,则分式的值变成原分式值的相反数.本节课的流程比较顺畅,先探究分式的基本性质,然后顺势探究分式变号法则.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.
探究点二:列分式方程某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方程为()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:设原计划每天生产x个,则实际每天生产(x+4)个,根据题意可得等量关系:(原计划20天生产的零件个数+10个)÷实际每天生产的零件个数=15天,根据等量关系列出方程即可.设原计划每天生产x个,则实际每天生产(x+4)个,根据题意得20x+10x+4=15.故选A.方法总结:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.三、板书设计1.分式方程的概念2.列分式方程本课时的教学以学生自主探究为主,通过参与学习的过程,让学生感受知识的形成与应用的价值,增强学习的自觉性,体验类比学习思想的重要性,然后结合生活实际,发现数学知识在生活中的广泛应用,感受数学之美.
【类型三】 分式方程无解,求字母的值若关于x的分式方程2x-2+mxx2-4=3x+2无解,求m的值.解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根.解:方程两边都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①当m-1=0时,此方程无解,此时m=1;②方程有增根,则x=2或x=-2,当x=2时,代入(m-1)x=-10得(m-1)×2=-10,m=-4;当x=-2时,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法总结:分式方程无解与分式方程有增根所表达的意义是不一样的.分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数.三、板书设计1.分式方程的解法方程两边同乘以最简公分母,化为整式方程求解,再检验.2.分式方程的增根(1)解分式方程为什么会产生增根;(2)分式方程检验的方法.
把解集在数轴上表示出来,并将解集中的整数解写出来.解析:分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集,再找出解集范围内的整数即可.解:x+23<1 ①,2(1-x)≤5 ②,由①得x<1,由②得x≥-32,∴不等式组的解集为-32≤x<1.则不等式组的整数解为-1,0.方法总结:此题主要考查了一元一次不等式组的解法,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.三、板书设计一元一次不等式组概念解法不等式组的解集利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的基础之上.解不等式组时,先解每一个不等式,再确定各个不等式组的解集的公共部分.
分式1x2-3x与2x2-9的最简公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最简公分母为x(x+3)(x-3).方法总结:最简公分母的确定:最简公分母的系数,取各个分母的系数的最小公倍数;字母及式子取各分母中所有字母和式子的最高次幂.“所有字母和式子的最高次幂”是指“凡出现的字母(或含字母的式子)为底数的幂的因式选取指数最大的”;当分母是多项式时,一般应先因式分解.【类型二】 分母是单项式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先确定最简公分母,找到各个分母应当乘的单项式,分子也相应地乘以这个单项式.解:(1)最简公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最简公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最简公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.
解析:(1)先把第二个分式的分母y-x化为-(x-y),再把分子相加减,分母不变;(2)先把第二个分式的分母a-b化为-(b-a),再把分子相加减,分母不变.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法总结:分式的分母互为相反数时,可以把其中一个分母放到带有负号的括号内,把分母化为完全相同.再根据同分母分式相加减的法则进行运算.三、板书设计1.同分母分式加减法法则:fg±hg=f±hg.2.分式的符号法则:fg=-f-g,-fg=f-g=-fg.本节课通过同分母分数的加减法类比得出同分母分式的加减法.易错点一是符号,二是结果的化简.在教学中,让学生参与课堂探究,进行自主归纳,并对易错点加强练习.从而让学生对知识的理解从感性认识上升到理性认识.
有三种购买方案:购A型0台,B型10台;A型1台,B型9台;A型2台,B型8台;(2)240x+200(10-x)≥2040,解得x≥1,∴x为1或2.当x=1时,购买资金为12×1+10×9=102(万元);当x=2时,购买资金为12×2+10×8=104(万元).答:为了节约资金,应选购A型1台,B型9台.方法总结:此题将现实生活中的事件与数学思想联系起来,属于最优化问题,在确定最优方案时,应把几种情况进行比较.三、板书设计应用一元一次不等式解决实际问题的步骤:实际问题――→找出不等关系设未知数列不等式―→解不等式―→结合实际问题确定答案本节课通过实例引入,激发学生的学习兴趣,让学生积极参与,讲练结合,引导学生找不等关系列不等式.在教学过程中,可通过类比列一元一次方程解决实际问题的方法来学习,让学生认识到列方程与列不等式的区别与联系.
(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17.(4)∵∠EAF=90°(旋转角相等)且AF=AE,∴△EAF是等腰直角三角形.【类型二】 旋转的性质的运用如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3则∠BE′C=________度.解析:连接EE′,由旋转性质知BE=BE′,∠EBE′=90°,∴△BEE′为等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板书设计1.旋转的概念将一个图形绕一个顶点按照某个方向转动一个角度,这样的图形运动称为旋转.2.旋转的性质一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等.
方法总结:已知解集求字母系数的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解题过程体现了方程思想.三、板书设计1.一元一次不等式的概念2.解一元一次不等式的基本步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)两边都除以未知数的系数.本节课通过类比一元一次方程的解法得到一元一次不等式的解法,让学生感受到解一元一次不等式与解一元一次方程只是在两边都除以未知数的系数这一步时有所不同.如果这个系数是正数,不等号的方向不变;如果这个系数是负数,不等号的方向改变.这也是这节课学生容易出错的地方.教学时要大胆放手,不要怕学生出错,通过学生犯的错误引起学生注意,理解产生错误的原因,以便在以后的学习中避免出错.
安装及运输费用为600x+800(12-x),根据题意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整数,所以x=2,3,4.答:有三种方案:①购买甲种设备2台,乙种设备10台;②购买甲种设备3台,乙种设备9台;③购买甲种设备4台,乙种设备8台.方法总结:列不等式组解应用题时,一般只设一个未知数,找出两个或两个以上的不等关系,相应地列出两个或两个以上的不等式组成不等式组求解.在实际问题中,大部分情况下应求整数解.三、板书设计1.一元一次不等式组的解法2.一元一次不等式组的实际应用利用一元一次不等式组解应用题关键是找出所有可能表达题意的不等关系,再根据各个不等关系列成相应的不等式,组成不等式组.在教学时要让学生养成检验的习惯,感受运用数学知识解决问题的过程,提高实际操作能力.
1.了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用;(重点)2.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长l=nπR180和扇形面积S扇=nπR2360的计算公式,并应用这些公式解决一些问题.(难点)一、情境导入如图是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗(π 取3.14)?我们容易看出这段铁轨是圆周长的14,所以铁轨的长度l≈2×3.14×1004=157(米). 如果圆心角是任意的角度,如何计算它所对的弧长呢?二、合作探究探究点一:弧长公式【类型一】 求弧长如图,某厂生产横截面直径为7cm的圆柱形罐头盒,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头盒侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为()
在教授第一段歌曲的过程中我先让幼儿通过观看课件,对雪花有一个比较直观的认识后,引导幼儿逐句的学习歌词,(课件的四个画面分别表现了四句歌词的内容),再引导幼儿将歌词串起来有一个完整的印象并能有节奏的朗诵出来。歌词掌握之后通过欣赏歌曲、教师范唱、整首教授(幼儿表演式和师生问答式)等多种方法和形式掌握歌曲第一段的演唱。第一段的歌曲掌握较好的基础上,用魔棒引出创编的内容:魔棒想考一考小朋友:“冬天天上会飘雪花,那么其他的季节天上还会下什么呢?”在引导幼儿回忆有关雨滴的记忆,让幼儿对照雪花的歌词创编雨滴,重点让幼儿表现小雨滴落下来,用动作表现出来。难点(是初步感受乐曲旋律,了解上行音和下行音的旋律特点)的解决也主要依靠课件中比较直观、形象的图谱配合教师的无伴奏清唱,让幼儿更清晰、明了的掌握上行音、下行音的旋律特点。
经济教育内容十分宽泛,遵照二期课改所强调的“教育要与幼儿生活相结合,从生活中体悟,大班《学习》教材“逛超市”主题中,有一则“自主购物”的活动内容,其背景资料里又给我们提供了关于“钱币”的资料,这二则内容给了我们很大的启发。我们一共设计了二个教育活动,其一为“解读人民币”——主要从解读人民币上的中国元素入手(略),其次就是本次教育活动内容“制订合理用钱计划”,论点以要定位在“合理”上,是因为我们反复讨论后,认为由于每个家庭的经济条件不一,“节约”的概念对孩子来说很难诠释明白,而所谓“合理”即诠释或“必须要花的钱,一定要花,可以花和不花的钱,则根据家里的条件许可与否而定,但不必要花的钱,就可以不花”。这样孩子不仅容易懂,而且一旦理解后,可以逐步自主地转化为自己的行动。活动形式是通过创设情景,让幼儿小组合作模拟制订一份花钱的计划,通过在合作的过程中生生互动、师生互动的方式,体现合作的快乐,但我们更看重的是蕴藏在活动背后的教育内涵和价值。
活动准备:1、师生共同收集各种商场,马路上和公园里的各种标志或从网上下载,打印出来。2、幼儿用书人手一册,实物展示仪。活动过程:一、参观标志展览,交流自己的记录,分享自己找到的各种标志。1、展示幼儿的标志,布置《城市里的标志》展览,带领幼儿参观。2、让幼儿与同伴交流自己收集或画下来的标志。3、请个别幼儿在集体面前讲述自己收集的标志,说说标志的用途。4、教师总结。
【活动目标】 1、认识各种各样的包装袋。 2、认识食品包装袋的各种标识,并能在生活中加以运用。 3、了解白色污染的危害,学习制作、使用环保手提袋。 【活动准备】 1、布置任务:和家长一起收集生活中见到的包装袋标识,与老师、小朋友交流分享,初步了解标志的意义和作用。 2、多媒体课件 3、教学挂图 4、每位幼儿带一袋小食品 5、大挂历纸、牛皮纸、透明胶、打孔机、塑料绳、彩笔等。
2、培养幼儿遵守交通规则的习惯,提高自我保护意识。 3、通过活动提高幼儿的蹦跳能力和动手操作能力。 活动准备:各种交通标志、画有标志或无标志的拼板若干、立体骰子若干、带有交通标志的礼物若干、磁带、录音机、有交通标志的牌子 活动过程: 一、 随音乐跳兔子舞进入活动场地。 二、 你才我翻 “小朋友,你们知道哪些交通标志啊?你们所说的可能会在后面的黑板上哦!”
活动目标:1、创设情境,让幼儿在操作过程中尝试列出得数是2的加法算式,理解加号、等于号的含义。2、感知加法算式所表达的数量关系。3、在活动中体验游戏的愉悦,提高幼儿学习数学的兴趣。 活动准备: 物质准备:1、城堡图一幅(三层)第一层:鱼塘第二层:花园第三层:水果店 (1条热带鱼+1条金鱼=1条热带鱼1条金鱼)图一幅 2、幼儿操作材料(+、=40个,数字1、1、2各40张)、水果用具若干(每名幼儿两种)、水果购物券84张 知识准备:幼儿会以游戏的方式进行2的组成
2启发幼儿的肢体意识和肢体动作,更重要的是过程 1师:"今天我给小朋友将个故事好不好,我来告诉你们啊,这个故事啊,发生在一个大森林里,你们先告诉我,你们知道森林里面什么特别多吗?" 儿:"树多............"模仿训练 师"哪个小朋友想来装扮一下森林里特别多的东西??"谁愿意来试一下" 儿"老虎" 师"老虎什么样子,我们来看看**做的像不像 师:"可以来做一下树是什么样子的" 幼儿做动作。故事:森林里住了两个巫婆,一个是跳跳巫婆,一个是奇奇巫婆,跳跳巫婆啊,整天都喜欢跳来跳去的,他高兴的时候跳,不高兴的时候也在跳,那奇奇巫婆呢,整天都喜欢问为什么,有一天呢,奇奇巫婆和跳跳巫婆他们一起在森林里面去玩,他们就发现前面的树上张了好多好多红色的果子,他们就过去你一口我一口的吃了起来(教师做动作)吃着吃着啊,你们知道发生什么事了吗?他这个果子的名字就叫爱睡果,他们吃完以后就睡着了,睡了好久好久,睡了好几年,后来啊,有一天,突然他们听到了一阵特别吵的声音,把他们从睡梦中吵醒了,你们知道是什么声音吗?特别特别乱,我们一起来做一做特别特别乱的声音(幼儿根教师一起想象乱的声音)启发幼儿想象自己的身体都能发出什么声音,你们知道为什么这么乱吗?因为啊,森林里面要开音乐会了好多的小朋友还有小动物都来参加音乐会,小朋友们正在做蛋糕呢,我们一起去做蛋糕好不好?来,我们一起来做蛋糕音乐律动"做面包"音乐<森林音乐会> 师生一起先摘果子,比一比谁摘的果子多 挤牛奶,切蛋糕,刷果酱,搅拌牛奶, 搅面,跺面,跳一跳学拍"强弱弱弱.
我们的身体对于孩子们来说是既熟悉又神秘。大班幼儿的身体和心智发生了较大的变化。伴随着这种变化,幼儿有一种“我长大了”的自豪感。对“身体的秘密”的探索是幼儿对“长大”最直观的感知和体验。幼儿对“身体”的经验已经从小班的“指认、初步了解”等笼统认知,逐步分化,对身体各部位的特征和作用出现了深入地体验和发现的需求。同时,5——6岁幼儿不仅精力充沛,生长发育迅速,而且对自己身体的生长变化也特别感兴趣开始表现出前所未有的自信和初生牛犊不怕虎的探究精神。于是我们在进入《身体的秘密》这一主题活动中帮助幼儿科学认识自己身体的变化,引导幼儿在进一步认识自己身体的基础上,学会能够让我们保持身体健康的方法,养成良好的运动习惯以及生活习惯。同时孩子们通过探究自己身体的奥秘知道如何好好保护自己身体。
母亲给予我们生命的体验,我们感激;母亲是我们茁壮成长,我们感激;母亲给予我们教育和开导,是我们获取知识和力量,我们感激。在我们的生命里,总会有困难和曲折,是母亲给予我们关怀和帮助,所以我们更应该感激。现在电视上有段公益广告,是一位小男孩为自己的母亲洗脚的片断,我看了很感动。可是在现实生活中,能有几个儿女能做到呢?“滴水之恩,当涌泉相报”,我们或许有时会对一个陌生的人的一点关怀而铭记于心,却对母亲的博爱熟视无睹,嫌她唠叨,或因一些小事就大发雷霆……然而,母亲却从不放在心上,永远在一旁默默地忍受;当我们做错事时,耐心地开动教育我们,当我们遇到挫折时给予我们支持和鼓励。同学们,可能你以前也嫌母亲唠叨,对母亲发脾气,不如让我们今天开始,从孝顺母亲开始,学会感恩,让我们记住天下母亲共同的节日——母亲节。当母亲空闲的时候为母亲洗一洗脚,为她捶捶被沉重的家务压弯了的脊背,给母亲一个暖暖的拥抱,一句温馨的祝福,一脸感恩的微笑吧!