学生以小组为单位,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算.意图:通过学生的合作探究,找到解决“蚂蚁怎么走最近”的方法,将曲面最短距离问题转化为平面最短距离问题并利用勾股定理求解.在活动中体验数学建摸,培养学生与人合作交流的能力,增强学生探究能力,操作能力,分析能力,发展空间观念.3.突破重点、突破难点的策略在教学过程中教师应通过情景创设,激发兴趣,鼓励引导学生经历探索过程,得出结论,从而发展学生的数学应用能力,提高学生解决实际问题的能力.
探究活动二的安排,是要让学生明确只靠实验得出的结论,可能会以点带面,从而进一步说明学习推理的必要性。并小结出:如果要判断一个结论不正确只要举一个反例就可以了。探究活动三的安排是说明只靠实验得出的结论也不可靠,必须经过有根有据的推理才行。活动交流:(1)在数学学习中,你用到过推理吗?(2)在日常生活中,你用到过推理吗?这是一座桥梁,把课堂引向推理的方法。例题的安排,可以让学生学会简单的推理方法,同时增强学生的学习兴趣。课堂练习:①游戏:苹果在哪里?②判断:是谁打破玻璃?把练习变成游戏的形式,也是为了增加课堂的趣味性,提高学生的学习兴趣。课堂小结:进一步明确学习推理的必要性。课后作业:①课本习题6.1:2,3。②预习下一节:定义与命题
我们遇到的往往就是这样的方程组,我们要想比较简捷地把它解出来,就需要转化为同一个未知数系数相同或相反的情形,从而用加减消元法,达到消元的目的.请大家把解答过程写出来.解:①×3,得:6936xy??,③②×2,得:3486??yx,④③-④,得:2?y.将2?y代入①,得:3?x.根据上面几个方程组的解法,请同学们思考下面两个问题:(1)加减消元法解二元一次方程组的基本思路是什么?(2)用加减消元法解二元一次方程组的主要步骤有哪些?(由学生分组讨论、总结并请学生代表发言)[师生共析](1)用加减消元法解二元一次方程组的基本思路仍然是“消元”.(2)用加减法解二元一次方程组的一般步骤是:①变形----找出两个方程中同一个未知数系数的绝对值的最小公倍数,然分别在两个方程的两边乘以适当的数,使所找的未知数的系数相等或互为相反数.②加减消元,得到一个一元一次方程.③解一元一次方程.
[互动2]师:请大家从上面的解题经历中,总结一下如果已知函数的图象,怎样求函数的表达式?小组讨论之后再发表意见。生:第一步根据图象,确定这个函数是正比例函数或是一次函数;第二步设函数表达式;第三步:根据表达式列等式,若是正比例函数,只要找图象上一个点的坐标就可以了;若是一次函数,则需要找到图象上两个点的坐标,然后把点的坐标分别代入所设的解析式中,组成关于R、b的一个或两个方程。第四步:求出R、b的值第五步:把R、b的值代回到表达式中就可以了。师:分析得太好了。那么,大家说一说,确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?要说明理由。生:确定正比例函数需要一个条件,而确定一次函数需要两个条件。原因是正比例函数的表达式:y=Rx(R≠0)中,只有一个系数R,而一次函数的表达式y=Rx+b(R≠0)中,有两个系数(待定)R和b。
通过活动让学生思考:回答问题。对学生的不同回答,只要合理,就给以认可。设计意图:让学生学会有条理的表述自己的思考过程,理解三种数据都是刻画了一组数据的平均水平。整个授课的过程中,由于问题的难点进行了分解突破,问题的解决水到渠成。同时要学生意识到:学会用数据说话,科学地分析身边的事例。5.归纳小结,巩固提高。(1)列表对比平均数众数中位数概念注意点(2)在生活中可用平均数、众数和中位数这三个特征数来描述一组数据的集中趋势,它们各有不同的侧重点,需联系实际进行选择,对于同一份材料,同一组数据,不同的目的,应选择不同的数据代表。因从不同的角度进行分析时,看到的结果可能是截然不同的。作为信息的接受者,分析数据应该从多角度对统计数据作出较全面的分析,从而避免机械的,片面的解释。
③如果某人本月缴所得税19.2元,那么此人本月工资薪金是多少元?根据所给条件写出简单的一次函数表达式是本节课的重点加难点,所以在解决这一问题时及时引导学生总结学习体会,教给学生掌握“从特殊到一般”的认识规律中发现问题的方法。类比出一次函数关系式的一般式的求法,以此突破教学难点。在学习过程中,我巡视并予以个别指导,关注学生的个体发展。经学生分析:(1)当月收入大于1600元而小于2100元时,y=0.05×(x-1600);(2)当x=1760时,y=0.05×(1760-1600)=8(元);(3)设此人本月工资、薪金是x元,则19.2=0.05×(x-1600) X=1984五.教学效果课前:通过本节课的学习,教学目标应该可以基本达成,学生能够理解一次函数和正比例函数的概念,以及它们之间的关系,并能正确识别一次函数解析式,能根据所给条件写出简单的一次函数表达式,且通过本节课的学习学生的抽象思维能力,数学应用能力都能有所提升,
引导学生回忆所学知识。通过这节课的学习你得到什么启示和收获?谈谈你的感受.目的:总结回顾学习内容,有助于学生养成整理知识的习惯;有助于学生在刚刚理解了新知识的基础上,及时把知识系统化、条理化。(四)作业布置加强“教、学”反思,进一步提高“教与学”效果。四、说板书设计采用了如下板书,要点突出,简明清晰。一次函数正比例函数图像的画法:确定两点为(0,0)和(1,K)一次函数选择的两点为:(0,k)和(-b\k,0)五、说课后小结实践证明,在教学中,充分利用教学方法的优势,为学生创造一个好的学习氛围,来引导学生发现问题、分析问题从而解决问题。多媒体课件支撑着整个教学过程,令学生在一个生动有趣的课堂上,能愉快地接受知识
一、说教材(一)、教学内容:一年级数学上册第73-74页的内容及相应的习题。(二)、教材所处地位及作用“11-20各数的认识”这部分教材是在学生掌握10以内数的基础上,通过操作实践,观察思考、合作交流等学习方式帮助学生学习新知识,并且为学习20以内的加、减法做好准备。本课分成三个层次进行教学:第一,是先出示水果卡片的情境图,让学生观察、数一数,图中有些什么?有多少?并且通过这个情境图让学生明白数数是按顺序点着数。第二,是让学生通过观察思考、动手操作、数一数及合作交流的学习方式去学习“11-20各数”的认识、组成、数的顺序及大小。第三,通过创设一系列的游戏情境,让学生巩固本节课的新知识。(三)、教学目标:1.常识技巧目的:通过《11-20各数的意识》的教养,学生应当取得以下方面的知识和技能
0的书写有其规范的笔顺,对此学生在第一次书写时,要对学生说清楚0这个数字的启闭与收笔,要让每个学生清楚0在田字格中所占的位置,对个别学生不正确的书写要及时纠正。【设计意图】借助小白兔吃萝卜的有趣情境,用运动的观点,让学生直观形象地体会物体个数从有到无的变化过程,从中让学生知道“没有”可以用数字0表示,知道0所表示的物体个数比123.....要少。三全课总结让学生说一说:这节课你有什么收获?你有什么体会?还有哪些疑问?教师总结:同学们,今天我们知道了一个也没有就用0这个数字来表示,在生活中我们也经常见到0.直尺上的0表示从0开始,温度计上的0,表示的是一个基准.....我们还学会了0的写法。课下希望你们能留心观察,相信你们充满智慧的双眼会发现更多与0相关的问题。
课程分析中专数学课程教学是专业建设与专业课程体系改革的一部分,应与专业课教学融为一体,立足于为专业课服务,解决实际生活中常见问题,结合中专学生的实际,强调数学的应用性,以满足学生在今后的工作岗位上的实际应用为主,这也体现了新课标中突出应用性的理念。分段函数的实际应用在本课程中的地位:(1) 函数是中专数学学习的重点和难点,函数的思想贯穿于整个中专数学之中,分段函数在科技和生活的各个领域有着十分广泛的应用。(2) 本节所探讨学习分段函数在生活生产中的实际问题上应用,培养学生分析与解决问题的能力,养成正确的数学化理性思维的同时,形成一种意识,即数学“源于生活、寓于生活、用于生活”。教材分析 教材使用的是中等职业教育课程改革国家规划教材,依照13级教学计划,函数的实际应用举例内容安排在第三章函数的最后一部分讲解。本节内容是在学生熟知函数的概念,表示方法和对函数性质有一定了解的基础上研究分段函数,同时深化学生对函数概念的理解和认识,也为接下来学习指数函数和对数函数作了良好铺垫。根据13级学生实际情况,由生活生产中的实际问题入手,求得分段函数此部分知识以学生生活常识为背景,可以引导学生分析得出。
(三)学以致用,巩固新知为巩固本节的教学重点我再次给出三道问题: 1)绝对值是7的数有几个?各是什么?有没有绝对值是-2的数?2)绝对值是0的数有几个?各是什么? 3)绝对值小于3的整数一共有多少个?先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。(四)总结归纳,知识升华小结时我也将充分发挥学生学习的主动性,发挥教师在教学的启发引导作用,和学生一起合作把本节课所学的内容做一个小结。(五)布置作业,拓展新知布置作业不是目的,目的是使学生能够更好地掌握并运用本节课的内容。所以我会布置这样一个作业:请学生回家在父母的帮助下,找出南方和北方各三个城市的温度,并比较这些温度的大小,并写出每个温度的绝对值进行比较
[设计说明]:只给出情景故事,感知了一个大数,这样还不能引起学生对大数的深刻认识,所以再给出宇宙星空中的这些大数,让学生读读、看看这些数,引起学生强烈的认知上的冲突,形成一种心理上的想读、想写的求知欲望。(二)、引出问题、探索新知在上面的例子中,我们遇到了几个很大的数,看起来、读起来、写起来都不方便,有没有简单的表示法呢?分以下步骤完成。1、回忆100 ,1000,10000,能写成10( )2、300=3×100=3×10( )3000=3×1000=3×10()30000=3×10000=3×10()3、再由学生完成上面4个例子中的数的表示。(学生对160 000 000 000这个数可能表示为、16×1010,教师要利用学生这种错误,强调a的范围)4、教师给出科学记数法表示:a×10( )(1≤a<10)。[设计说明]:通过层层递进的探究设计,启发学生成功地发现“科学记数法”的表示方法,同时又通过学生示错,让学生记住a的范围,体现了以学生为主的探究式教学。
一、教材分析(一)、内容、地位和作用这节课是义务教育课程标准实验教科书北师大版七年级第6章《数据的收集与表示》第一节《数据的收集》的第一课时。在此之前,学生在已经学习了一些初步的数据的处理问题,对运用数据去解决日常生活中的实际问题已有所了解,知道了运用数据的价值。本节课是在此基础上对数据的收集又有了更进一步的学习与挖掘。为后面运用数据的知识去分析一些现象打下基础。新的义务教育课程标准与我国以往的数学课程相比,在教学内容上大大加强了统计和概率,在教学方法上积极倡导自主探索和合作学习,帮助学生通过反复观察,了解不确定的现象也能够表现出规律,整个内容围绕真实的数据展开教学。依据新课程标准,在教学中,应注重所学内容与日常生活、自然、社会和科学技术领域的联系,使学生体会统计与概率对制定决策的重要作用。
五、课堂设计理念本节课着力体现以下几个方面:1、突出问题的应用意识。在各个环节的安排上都设计成一个个问题,使学生能围绕问题展开讨思考、讨论,进行学习。2、体现学生的主体意识。让学生通过列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;让学生通过合作交流,得出问题的不同解法;让学生对一节课的学习内容、方法、注意点等进行归纳。3、体现学生思维的层次性。教师首先引导学生尝试用算术方法解决问题,然后再引导学生列出含未知数的式了,寻找相等关系列出方程,在寻找相等关系、设未知数及作业的布置等环节中都注意了学生思维的层次性。4、渗透建模思想。把实际问题中的数量关系用方程形式表示出来,就是建立一种数学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力。
最后我引导学生观察自己手中的量角器引导学生在测量的时候有时用度的单位还不够就必须用到比度还小的单位分和秒,进而明白度分秒之间的转换关系,并且引导学生对比和度分秒进制一样的还有时间。从而进入到例题2的讲解。接下来让学生通过随堂练习来加强和巩固本节课的内容。提高学生对本节课知识的系统综合。(四)归纳总结。小结主要由学生完成,我作出适当的补充。最后总结角的比较表方法及估测和某些角之间的等量关系的书写基本的几何语句并能根据语句画出几何图形。(五)布置作业通过作业及时了解学生学习效果,调整教学安排。使学生通过独立思考,自我评价学习效果;学会反思,发现问题;并试着通过阅读教材、查找资料或与同伴交流解决问题。
1、 教材的地位和作用本课教材所处位置,是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础.2、 教学目标①理解有理数产生的必然性、合理性及有理数的分类;②能辨别正、负数,感受规定正、负的相对性;③体验中国古代在数的发展方面的贡献.3、 教学重点和难点教学重点:理解正数和负数的概念和有理数概念.教学难点:对负数概念的理解和有理数的分类.二、 教学分析鉴于初一年级学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。我决定采取启发式教学法及情感教学,创设问题情境,引导学生主动思考,用大量的实例和生动的语言激发学生学习兴趣,调节学习情绪。
(1) 这28天中属于“重度染污”、“中度污染”、“轻度污染”、“良”和“优”的天数各有几天?出现的频率各是多少?请用一张统计表来表示;(3) 从你作的统计图表中,你得到哪些结论?说说你的理由.(三)课堂小结:本节课学习了用统计来直观来表示数据,并从统计图中发现数据间的联系。整理数据——制统计表1、从资料给出的许多数据中选取相关数据进行整理;2、标目分成横、纵两种(允许不同分法);3、把数据放入相应位置。为了更清晰地用统计表展示与描绘数据,统计表必须有规范的结构:标题(统计表的名称)标目(如“国家”、“届数”…)数据、必要的说明(数据的单位、制表日期等)折线统计图的步骤:(1)写出统计图名称;(2)画出横、纵两条互相垂直的数轴(有时不画箭头),分别表示两个标目的数据;(3)根据横、纵各个方向上的各对对应的标目数据画点;(4)用线段把每相邻两点连接起来。
(五)、反馈矫正,注重参与: 为巩固本节的教学重点让学生独立完成: 1、课本23页练习1、2 2、课本23页3题的(给全体学生以示范性让一个同学板书) 为向学生进一步渗透数形结合的思想让学生讨论: 3、数轴上的点P与表示有理数3的点A距离是2, (1)试确定点P表示的有理数; (2)将A向右移动2个单位到B点,点B表示的有理数是多少? (3)再由B点向左移动9个单位到C点,则C点表示的有理数是多少? 先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。 (六)、归纳小结,强化思想: 根据学生的特点,师生共同小结: 1、为了巩固本节课的教学重点提问:你知道什么是数轴吗?你会画数轴吗?这节课你学会了用什么来表示有理数? 2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数? 让学生牢固掌握一个有理数只对应数轴上的一个点,并能说出数轴上已知点所表示的有理数。
一、教材分析:本节课选自北京师范大学教育出版社七年级上册第五章第三节,是学生学习一元一次方程的含义,并掌握了解法后,通过分析图形问题中的数量关系,建立一元一次方程并用之解决实际问题,是学生运用数学知识解决生活中实际问题中的典型素材,可提高学生解决问题的能力,提高学习数学的兴趣,形成学以致用的思想,认识方程运用模型的重要环节。二、学情分析:通过前几节解方程的学习,学生已经掌握了解、列方程的基本方法,在此过程中也初步掌握了运用方程解决实际问题的一般过程,基本会通过分析简单问题中已知量与未知量的关系列出方程解应用题,但学生在列方程解应用题时常常会遇到从题设条件中找不到所依据的等量关系,或虽能找到等量关系,但不能列出方程这样的问题,因此,在教师的引导下,通过学生亲自动手制作模型,自主探索在模型变化过程中的等量关系,建立方程,从而将图形问题代数化。
通过有针对性的练习,巩固所学,拓展知识,形成应用能力。本环节主要是针对学生对本节内容的掌握程度进行检测反馈。学生在经过自学、置疑、解疑、教师点拨后作一套本节的检测题。做完后,教师或学生给出答案,并给予简单解析。教师对检测成绩做以简单的统计,了解本节课的学习效果。检测题必须精心设计与安排,因为学生在做经过精心安排的检测题时,不仅在积极地掌握数学知识,而且能获得进行创造性思维的能力。要充分发挥检测题的功能,设计检测题时应由浅入深、难易适当、逐步提高、突出重点与关键、注意题型的搭配。在试题设计上,应将知识、素质、能力的考查统一起来,既有知识性、分析性题目,又有应用性、直觉形象性题目。提高创新性题型的比重和难度,少问“是什么”,多问“为什么”、“对某些问题,你以为如何”等,增强答案的发散性。