“整数乘法运算定律推广到小数乘法”是在学生已经掌握了小数乘法计算、整数乘法运算定律的基础上进行教学的。教材通过几组算式,让学生计算出○的左右两边算式的得数,找出它们的相等关系,总结出整数的运算定律对小数同样适用。学好这部分内容,不仅培养学生的逻辑思维能力,而且以后能用本课所学的使一些小数的计算简便,也为以后学习用不同方法解答应用题起着积极的推动作用。2、教学目标的确定:根据教材特点,依据数学课程标准的要求及学生实际,我确定本课教学目标如下:(1)知识能力目标:理解整数乘法运算定律对于小数乘法用样适用,并能应用这些定律进行一些简便计算。(2)过程方法目标:引导学生在经历猜想、验证等数学活动中,发展学生的思维能力。(3)情感态度目标:通过小组合作学习,培养学生进行交流的能力与合作意识,体验到解决问题策略的多样性。结合相关内容,渗透“事物间是普遍联系”的观点,对学生进行辨证唯物主义的启蒙教育。
(一)教学内容:我说课的内容是第5单元中内容,(二)教材地位:加法是数学中最基本的运算之一。从教材的纵向联系来看,几年前已学过整数加法和小数加法,以及加法的运算定律,知道它不仅适用于整数加法,而且也适用于小数加法。那么是否也适用于现在所学习的分数加法呢?这就是我们这节课要研究的问题,当然,结果是肯定的。通过本课的学习,将整数加法的运算定律推广到分数加法,可使学生对加法的认识从感性上升到理性。为后面学习分数加法的简便计算打好基础,同时也为学习小数、分数混合运算奠定基础。其次,将整数加法的运算定律推广到分数加法,也拓展了加法运算定律的使用范围,丰富其内涵。而且加法运算定律字母表示形式,为以后代数知识的学习奠定了初步基础。
教学目标1、通过教学,学生懂得应用加法运算定律可以使一些分数计算简便,会进行分数加法的简便计算.2、培养学生仔细、认真的学习习惯.3、培养学生观察、演绎推理的能力.教学重点整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便.教学难点整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便.教学过程设计一、复习准备(演示课件:整数加法运算定律推广到分数加法)下载1.教师:整数加法的运算定律有哪几个?用字母怎样表示?板书:a+b=b+a(a+b)+c=a+(b+c)2.下面各等式应用了什么运算定律?①25+36=36+25 ②(17+28)+72=17+(28+72)③6.2+2.3=2.3+6.2 ④(0.5+1.6)+8.4=0.5+(1.6+8.4)教师:加法交换律和结合律适用于整数和小数,是否也适用于分数加法呢?这节课我们就一起来研究.二、学习新课(继续演示课件:整数加法运算定律推广到分数加法)下载1.出示:下面每组算式的左右两边有什么关系?
《同一首歌》的原型是30年代末一个名不见经传的年轻音乐人在上海沦陷后创作的。时逢国难当头,很多人梦想和希望破碎,生离死别。作者创作该曲,并配上词。以此激励自己和身边的人们对未来要充满希望。可当时的局面无法让这首歌传唱。据说作者后来去了延安就杳无音讯了。他的作品就此积压在音乐学院的资料堆中。到了80年代末才被陈哲、胡迎节等人发掘,整理,重新改创推出。创作于1990年,当时由歌手刘畅首唱,1991年杭天琪与香港歌星甄妮在春节联欢晚会上共同演唱《同一首歌》,这也是《同一首歌》第一次公演,成为回顾历届春晚经典歌曲的曲目之一,2000年央视举办《同一首歌》栏目,蔡国庆、毛阿敏等多人作为该栏目的压轴演唱。从此,《同一首歌》就像长了翅膀一样,飞进了千家万户,成了一首风靡全国的歌曲。
A段由4个乐句构成,第一、二乐句(第1~8小节)音乐流畅、平和,主题深沉、亲切、凝重,第三乐句(第9~16小节)是这个乐段的小高潮,接着连接第四乐句结束。A段音乐抒发人们经过辛勤劳动获得丰硕成果、欢聚一堂亲切交流时的真挚感情。B段也由4个乐句构成,第一乐句(第17~20小节)以下属和弦的分解形式,从高音开始,造成柔和的色彩和热烈的气氛,力度逐渐加强的处理,形成全曲高潮,抒发了人们激动、兴奋的心情,并与A乐段形成对比。第二乐句(第21~24小节)是第一乐句的变化重复,使感情进一步深化,体现发自内心的倾诉。第三乐句(第25~28小节)是A段音乐主题的变化再现,第四乐句中的九度大跳,再次抒发出人们兴高采烈的喜悦心情。歌曲最后的结束句是一个典型的由下属功能转到主功能的补充终止形式,使歌曲在祥和、喜庆的气氛中结束。B段音乐揭示了歌曲的主题思想——我们向着建设社会主义现代化的伟大目标,唱着“同一首歌”去迎接新的辉煌。
教学过程:一、导入。师:大家曾经一起学习、一起快乐、一起迷惘、一起长大,今天就让我们在同一首歌的旋律中,回忆述说我们走过的美好时光。二、教授新课。1、介绍歌曲。师:歌曲创作于1950年,作为十一届来运会开幕式电视直播的片头曲。播出后受到人们热烈的欢迎。《同一首歌》由陈哲、迎节作词,孟卫东作曲。1996年,著名男中音歌唱家廖昌永曾和孩子们在上海举行的特奥会上唱过这首歌,以后中央三台又设置了“同一首歌”栏目,《同一首歌》就是此栏目的主题歌。由此,《同一首歌》就像长了翅膀一样,飞进了千家万户,成了一首风靡全国的歌曲。2、学习歌曲。师:这首歌曲大部分同学都熟悉,但是否真正了解歌曲的内涵呢?并且是否能用歌声真切地表达歌曲的思想感情呢?4.14青海玉树发生7.1级大地震,全国人民齐心合力度难关,而最能表现此情此景的就是《同一首歌》!因此,我们应该学习一下,为玉树加油!下面我就跟大家一起,把这首歌深入的了解一下。3、在歌曲旋律的背景中,师生共同有表情地朗诵歌词。4、学生分组思考。(1)你对歌词“大地知道你心中的每个角落”,“同样的感受给了我们同样的渴望”中的“角落”、“渴望”是如何理解的?(2)歌词的主题思想是什么?师: 角落——失意、孤独、无助。感受——对人间真善美的感悟 沟通、理解、鼓励。
尊敬的各位评委老师,大家好!我说课的题目是小学道德与法治三年级下册《同学相伴》。下面 我将从教材分析、学情分析、教学目标与重难点、教法与学法、教学 过程、板书设计 6 个方面进行说课。一、教材分析《同学相伴》是统编教材小学《道德与法治》三年级下册第一单 元第 4 课,共有两个话题,本节课学习的是第一个话题《同学相伴的 快乐》,主要是引导学生体会同学在一起共同游戏、共同生活中的快乐,旨在引导学生愿意与同伴在一起,体会乐群的意义。 二、学情分析三年级的学生在两年半的校园生活中,在与同学相伴方面,已经积累了较多的生活经验和体验,但他们还不能从理性上理解共同生活对于个体的意义。因此,要通过有效的教学,帮助引导学生体会同学相伴的快乐和乐群的意义。三、教学目标与重难点 基于教材、学情的分析,以及对小学道德与法治课程的理解,我确定了本节课的教学目标与重难点。教学目标我确定了三个。1. 体会同学相伴的快乐。2. 懂得同学相伴的重要性。3. 乐于在生活中与同学合作、分享。教学重点是:体会同学相伴的快乐和乐群的意义。难点是:体会共同生活对于个体的意义。
解析:先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),∴当x>1时,2x>kx+b.∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C.方法总结:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在y轴上(或下)方部分所有的点的横坐标所构成的集合.三、板书设计1.通过函数图象确定一元一次不等式的解集2.一元一次不等式与一次函数的关系本课时主要是掌握运用一次函数的图象解一元一次不等式,在教学过程中采用讲练结合的方法,让学生充分参与到教学活动中,主动、自主的学习.
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
一.说教材我今天说课的内容是义务教育课程标准北师大版七年级下册第四单元第二节的《用关系式表示的变量间关系》。在上节课的学习中学生已通过分析表格中的数据,感受到变量之间的相依关系,并用自己的语言加以描述,初步具有了有条理的思考和表达的能力,为本节的深入学习奠定了基础。二.说教学目标本节课根据新的教学理念和学生需要掌握的知识,确立本节课的三种教学目标:知识与能力目标:根据具体情况,能用适当的函数表示方法刻画简单实际问题中变量之间的关系,能确定简单实际问题中函数自变量的取值范围,并会求函数值。过程与方法目标:经历探索某些图形中变量之间的关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感。情感态度与价值观目标:通过研究,学习培养抽象思维能力和概括能力,通过对自变量和因变量关系的表达,培养数学建模能力,增强应用意识。
由于任何一个一元一次不等式都能写成ax+b>0(或<0)的形式,而此式的左边与一次函数y=ax+b的右边一致,所以从变化与对应的观点考虑问题,解一元一次不等式也可以归结为两种认识:⑴从函数值的角度看,就是寻求使一次函数y=ax+b的值大于(或小于0)的自变量x的取值范围。⑵从函数图像的角度看,就是确定直线y=ax+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。教学过程中,主要从以上两个角度探讨一元一次不等式与一次函数的关系。1、“动”―――学生动口说,动脑想,动手做,亲身经历知识发生发展的过程。2、“探”―――引导学生动手画图,合作讨论。通过探究学习激发强烈的探索欲望。3、“乐”―――本节课的设计力求做到与学生的生活实际联系紧一点,直观多一点,动手多一点,使学生兴趣高一点,自信心强一点,使学生乐于学习,乐于思考。4、“渗”―――在整个教学过程中,渗透用联系的观点看待数学问题的辨证思想。
故直线l2对应的函数关系式为y=52x.故(-2,-5)可看成是二元一次方程组5x-2y=0,2x-y=1的解.(3)在平面直角坐标系内画出直线l1,l2的图象如图,可知点A(0,-1),故S△APO=12×1×2=1.方法总结:此题在待定系数法的应用上有所创新,并且把一次函数的图象和三角形面积巧妙地结合起来,既考查了基本知识,又不局限于基本知识.三、板书设计利用二元一次方程组确定一次函数表达式的一般步骤:1.用含字母的系数设出一次函数的表达式:y=kx+b(k≠0);2.将已知条件代入上述表达式中得k,b的二元一次方程组;3.解这个二元一次方程组得k,b的值,进而得到一次函数的表达式.通过教学,进一步理解方程与函数的联系,体会知识之间的普遍联系和知识之间的相互转化.通过对本节课的探究,培养学生的观察能力、识图能力以及语言表达能力.
探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
今天我非常荣幸,能够站在庄严的国旗下为大家讲话。再过几天就是国庆节了,这不禁使我想起那些为了新中国的成立而抛头颅、洒热血、无私奉献的英雄们!回顾我们中华民族的历史长河,有无数的爱国志士至今还活在我们心中:有岳飞、郑成功、孙中山 李大钊等等。新中国成立以后,更是有许多杰出人物,如邓稼先、华罗庚、钱学森等等。这些人的光辉形象和他们的历史贡献,永远激励着我们每一个中国人。提起“爱国”这个词,那可是一个神圣的字眼。爱国是什么?爱国是热爱祖国的山河,热爱民族的历史,关心祖国的命运,体恤人民的疾苦,在危难时刻英勇战斗,为祖国捐躯的英雄壮举等等。
1、信息报送。学校突发事件发生后,学校、班级、知情者应立即将发生地点、时间等基本情况和有关信息立即报告学校应急事件处置领导小组、校长室。学校应急事件处置领导小组、校长室在规定时限内将事件发生的时间、地点、经过、危害程度、发展趋势、所采取的处理措施,需要帮助解决的问题等情况迅速报告镇教委领导。
(1)以人为本,减少危害。切实履行政府的社会管理和公共服务职能,把保障公众健康和生命财产安全作为首要任务,最大程度地减少突发公共事件及其造成的人员伤亡和危害。(2)居安思危,预防为主。高度重视公共安全工作,常抓不懈,防患于未然。增强忧患意识,坚持预防与应急相结合,常态与非常态相结合,做好应对突发公共事件的各项准备工作。
(一)危险化学品及其它有毒有害物质在经营、贮存、运输、使用和处置过程中发生的爆炸、燃烧、大面积泄漏等事件;(二)工业企业生产过程中因意外事故造成的废水、废气、固废、电磁辐射等环境污染破坏事件;(三)影响饮用水源地水质安全的突发性环境污染事件;(四)因不可抗力(含自然原因和社会原因)而造成危及环境安全及人体健康的环境污染事件;
玩 法 1、告诉孩子游戏的玩法、规则、观察的重点。 2、把两只气球吹起来,一只吹得大些,一只吹得较小,用线把气球口扎好。孩子观看,哪只气球在空中飘的时间长。
通过观察和操作活动课件产生探索各类蛋的兴趣 知道鸭蛋、鹌鹑蛋、鸭蛋、乌龟蛋和蜗牛蛋的形状、颜色和大小. 活动准备: 数种不同的蛋(如:鸡蛋、鸭蛋、皮蛋、茶叶蛋、鸵鸟蛋、鸽子蛋……).有关蛋的资料及课件。 活动过程: 1、事先请家长协助收集不同种类的蛋。 2、展示收集的蛋,请幼儿观察各种蛋的形状、大小和颜色,并加以比较。 3、让幼儿操作活动课件,知道和认识不同的蛋 4、将幼儿收集的蛋打(剥)开来,请幼儿看一看蛋里面是什么样子,有什么不同的地方,为什么? 5、将熟蛋切开,和幼儿分享;生鸡蛋则请大家轮流搅一搅,煮个蛋花汤。 活动评价: 能比较各种蛋的形状、大小和颜色。 能说出蛋里面有什么。 延伸活动: 可以请幼儿带一本有关蛋的书来幼儿园里和大家分享。 找一个晴朗的日子,您可以带幼儿到园所附近的公园,请幼儿仔细地观察树叶或小池塘,或许会找到一些动物的蛋宝宝。