活动准备:1、之前幼儿已制作了工资表。2、幼儿已有用木珠进行两数相加的初步体验。3、材料准备:木珠,雪花片,点卡,夹子,各种图片,纸,笔等。贴有各组标记的黑板四块。活动过程:一、幼儿介绍自己的工资表。“现在你们手里都拿着自己的工资表,那么谁愿意来给大家简单介绍一下你的工资表呢?”“说说你做了什么事,得到了多少钱?”(提示介绍1、2件事即可。)
活动准备:与中三班教师约定好时间。活动过程:一、讨论怎样做哥哥姐姐。1、我们长大了,当弟弟妹妹来我们大三班做客时我们应该怎样做小主人?和他们一起说些什么话?有什么本领要教他们?二、实践活动:1、热情大方迎接弟弟妹妹。每位幼儿邀请一位弟弟或妹妹到自己身边,做自我介绍,互相熟悉。
二、 活动目标1、 让幼儿知道长大了应该自己的事情自己做。2、 培养幼儿的自我服务意识。3、 锻炼幼儿的语言表达能力。三、 活动重难点1、 培养幼儿的自我服务意识。2、 教育幼儿自己的事情自己做。四、 活动准备:故事、衣服、音乐
二、重点与难点 1.玩具大家玩。 2.友好地玩。 三、材料及环境创设 1.每人自带一件玩具。 2.大皮球若干(如全班人数)。 3.与大班老师联系,拟定和大班幼儿共同玩皮球的计划。 四、设计思路 现代独生子女家庭的孩子,他们拥有许多玩具,但常常因缺少玩伴而不会与人分享玩具,和别人一起玩。本活动设计,让幼儿将自己的玩具带到幼儿园和同伴一起玩,和大班哥哥姐姐一起玩,在活动过程中,使其体会分享的快乐,并从中激发幼儿交往的愿望,培养幼儿初步的交往能力。本设计仅仅是一种思路。在日常教育中,老师可抓住时机,多设计这类活动,使幼儿在反复的情绪体验中,形成正确的观察。五、活动流程 激发情绪,介绍玩具,看别人玩——体验情绪,和同伴玩,和大哥哥一起玩——形成理念,大家一起玩才快乐
二、活动介绍:为了提倡这一点,我班开展了一项体育比赛活动:《小动物运粮》,从中发展幼儿动作的协调性、灵敏性,培养幼儿热爱小动物的情感。设置宽阔的活动场地及活动背景,引入情景,使幼儿引起活动积极性,请幼儿扮演自己所喜爱的小动物进行游戏,游戏中小动物们为了能得到运粮的胜利,不怕困难,能勇敢地坚持到最后。
2、通过多次尝试玩大口袋,结合袋子可打开、收拢、折叠 等特征,积极探索各种不同的玩法,并大胆设想合作着玩。重点:结合大口袋的特征探索玩法难点:合作探索玩法活动准备:1、提供尽量多供幼儿探索的米袋,若干较大的口袋供幼儿钻,音乐磁带,录音机,2、 游戏事先布置好场地,用米袋罩住椅子作为“碉堡”,米袋与钻的圈相连作为地道。
活动目标:1. 练习推的基本动作,锻炼上肢与下肢的力量,加强幼儿的肢体的协调能力。2. 遵守游戏规则,增强竞争意识。活动准备:1. 人手一块海绵。2. 长板凳和拱形门。活动过程:一.准备活动:1.在教师引导下做身体各个部位的动作。
2、能愉快地参与活动过程,提高身体的协调性及跳跃能力。(二)活动准备1、响罐若干。2、场地布置。 (三)活动流程:活动身体——分散探索——集体游戏——放松活动 (四)活动过程:1、 活动身体:垫脚走、蹲着走、慢慢走、快速走、慢慢跑、快速跑。
从课程内容来看,本节课属于“图形与几何”中“图形的性质”部分。依据课标的要求,我从以下四个方面设定了课程目标,分别是:1。知识技能:(1)掌握判定直角三角形全等的“斜边、直角边”定理。(2)已知一直角边和斜边,能用尺规作出直角三角形。2。数学思考:(1)经历探索、猜想、证明的过程,进一步体会证明的必要性,发展推理能力和有条理的表达能力。(2)在探究过程中,渗透由特殊到一般的数学思想方法。3。问题解决:能利用直角三角形的全等解决有关问题。4。情感态度:通过学习,让学生感受数学证明的严谨性,发展勇于质疑、严谨求实的科学态度。
(1)该校被抽查的学生共有多少名?(2)现规定视力5.1及以上为合格,若被抽查年级共有600名学生,估计该年级在2015年有多少名学生视力合格.解析:由折线统计图可知2015年被抽取的学生人数,且扇形统计图中对应的A区所占的百分比已知,由此即可求出被抽查的学生人数;根据扇形统计图中C、D区所占的百分比,即可求出该年级在2015年有多少名学生视力合格.解:(1)该校被抽查的学生人数为80÷40%=200(人);(2)估计该年级在2015年视力合格的学生人数为600×(10%+20%)=180(人).方法总结:本题的解题技巧在于从两个统计图中获取正确的信息,并互相补充互相利用.例如求被抽查的学生人数时,由折线统计图可知2015年被抽取的学生人数是80人,与其相对应的是扇形统计图中的A区,而A区所占的百分比是40%,由此求出被抽查的学生人数为80÷40%=200(人).
1.能从统计图中获取信息,并求出相关数据的平均数、中位数、众数;(重点)2.理解并分析平均数、中位数、众数所体现的集中趋势.(难点)一、情境导入某次射击比赛,甲队员的成绩如下:(1)根据统计图,确定10次射击成绩的众数、中位数,说说你的做法,并与同伴交流.(2)先估计这10次射击成绩的平均数,再具体算一算,看看你的估计水平如何.二、合作探究探究点一:从折线统计图分析数据的集中趋势广州市努力改善空气质量,近年空气质量明显好转,根据广州市环境保护局公布的2006~2010年这五年各年的全年空气质量优良的天数,绘制成折线图如图所示.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是________;(2)这五年的全年空气质量优良天数与它前一年相比较,增加最多的是________年(填写年份);(3)求这五年的全年空气质量优良天数的平均数.解析:(1)由图知,把这五年的全年空气质量优良天数按照从小到大的顺序排列为:333,334,345,347,357,所以中位数是345;
(1)用简洁明快的语言概括大意,不能超过200字;(2)图表中能确定的数值,在故事叙述中不得少于3个,且要分别涉及时间、路和速度这三个量.意图:旨在检测学生的识图能力,可根据学生情况和上课情况适当调整。说明:练习注意了问题的梯度,由浅入深,一步步引导学生从不同的图象中获取信息,对同学的回答,教师给予点评,对回答问题暂时有困难的同学,教师应帮助他们树立信心。第四环节:课时小结内容:本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题。通过列出关系式解决问题时,一般首先判断关系式的特征,如两个变量之间是不是一次函数关系?当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.
方法总结:要认真观察图象,结合题意,弄清各点所表示的意义.探究点二:一次函数与一元一次方程一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为()A.x=-1B.x=2C.x=0D.x=3解析:首先由函数经过点(0,1)可得b=1,再将点(2,3)代入y=kx+1,可求出k的值为1,从而可得出一次函数的表达式为y=x+1,再求出方程x+1=0的解为x=-1,故选A.方法总结:此题主要考查了一次函数与一元一次方程的关系,关键是正确利用待定系数法求出一次函数的关系式.三、板书设计一次函数的应用单个一次函数图象的应用一次函数与一元一次方程的关系探究的过程由浅入深,并利用了丰富的实际情景,增加了学生的学习兴趣.教学中要注意层层递进,逐步让学生掌握求一次函数与一元一次方程的关系.教学中还应注意尊重学生的个体差异,使每个学生都学有所获.
解:∵y=23x+a与y=-12x+b的图象都过点A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴两个一次函数分别是y=32x+6和y=-12x-2.y=32x+6与y轴交于点B,则y=32×0+6=6,∴B(0,6);y=-12x-2与y轴交于点C,则y=-2,∴C(0,-2).如图所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法总结:解此类题要先求得顶点的坐标,即两个一次函数的交点和它们分别与x轴、y轴交点的坐标.三、板书设计两个一次函数的应用实际生活中的问题几何问题进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题,在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维.在解决实际问题的过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.
学习目标1.掌握两个一次函数图像的应用;(重点)2.能利用函数图象解决实际问题。(难点)教学过程一、情景导入在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图所示.请你根据图象所提供的信息回答下列问题:甲、乙两根蜡烛燃烧前的高度分别是 厘米、 厘米,从点燃到燃尽所用的时间分别是 小时、 小时.你会解答上面的问题吗?学完本解知识,相信你能很快得出答案。二、 合作探究探究点一:两个一次函数的应用(2015?日照模拟)自来水公司有甲、乙两个蓄水池,现将甲池的中水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如下所示,结合图象回答下列问题.(1)分别求出甲、乙两个蓄水池中水的深度y与注水时间x之间的函数表达式;(2)求注入多长时间甲、乙两个蓄水池水的深度相同;(3)求注入多长时间甲、乙两个蓄水的池蓄水量相同;
探究点三:正比例函数的性质已知正比例函数y=-kx的图象经过一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三点在函数y=(k-2)x的图象上,且x1>x3>x2,则y1,y2,y3的大小关系为()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的图象经过一、三象限,可知-k>0即kx3>x2得y10时,y随x的增大而增大;k<0时,y随x的增大而减小.三、板书设计1.函数与图象之间是一一对应的关系;2.作一个函数的图象的一般步骤:列表,描点,连线;3.正比例函数的图象的性质:正比例函数的图象是一条经过原点的直线.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.已知函数的表达式作函数的图象,培养学生数形结合的意识和能力.理解一次函数的表达式与图象之间的一一对应关系.
四、教学设计反思这节内容是学生利用数形结合的思想去研究正比例函数的图象,对函数与图象的对应关系有点陌生.在教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图象的对应关系应让学生动手去实践,去发现,对正比例函数的图象是一条直线应让学生自己得出.在得出结论之后,让学生能运用“两点确定一条直线”,很快作出正比例函数的图象.在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力.当然,根据学生状况,教学设计也应做出相应的调整。如第一环节:创设情境 引入课题,固然可以激发学生兴趣,但也可能容易让学生关注代数表达式的寻求,甚至对部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直入主题,如提出问题:正比例函数的代数形式是y=kx,那么,一个正比例函数对应的图形具有什么特征呢?
解:(1)∵点(1,5)在反比例函数y=kx的图象上,∴5=k1,即k=5,∴反比例函数的解析式为y=5x.又∵点(1,5)在一次函数y=3x+m的图象上,∴5=3+m,即m=2,∴一次函数的解析式为y=3x+2;(2)由题意,联立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴这两个函数图象的另一个交点的坐标为(-53,-3).三、板书设计反比例函数的图象形状:双曲线位置当k>0时,两支曲线分别位于 第一、三象限内当k<0时,两支曲线分别位于 第二、四象限内画法:列表、描点、连线(描点法)通过学生自己动手列表、描点、连线,提高学生的作图能力.理解函数的三种表示方法及相互转换,对函数进行认识上的整合,逐步明确研究函数的一般要求.反比例函数的图象具体展现了反比例函数的整体直观形象,为学生探索反比例函数的性质提供了思维活动的空间.
观察 和 的图象,它们有什么相同点和不同点?学生小组讨论,弄清上述两个图象的异同点。交流讨论反比 例函数图象是中心对称图形吗?如果是,请找出对称中心.反比例函数图象是轴对称图形吗?如果是,请指出它的对称轴.二、随堂练习课本随堂练习 [探索与交流]对于函数 , 两支曲线分别位于哪个象限内?对于函数 ,两支曲线又分别位于哪个象限内?怎样区别这两个函数的图象。学生分四人小组全班探索。 三、课堂总结在进行函数的列表,描点作图的活动中,就已经渗透了反比例函数图象的特征,因此在作图象的过程中,大家要进行积极的探索 。另外,(1)反比例函数的图象是非线性的,它的图象是双曲线;(2)反比例 函数y= 的图像,当k>0时,它的图像位于一、三象限内,当k<0时,它的图像位于二、四象限内;(3)反比例函数既是中心对称图形,又是轴对称图形。
意境是什么?意境是艺术的灵魂。是客观事物精粹部分的集中,加上人的思想感情的陶铸,经过高度艺术加工达到情景交融、借景抒情,从而表现出来的艺术境界、诗的境界,就叫作意境。艺术从生活中来,但它不等同于生活。艺术与生活是辩证关系,生活是艺术唯一的源泉,艺术来源于生活,是现实生活的反映,但艺术中反映出来的生活,可以而且应当比实际的生活更高,更典型,更理想。就是说,艺术又要求对生活进行高度集中和概括,要求典型化、理想化,从而创造出比现实更美好、更富有诗意、更理想的艺术境界,创造出革命时代新的意境。这是革命的现实主义与革命的浪漫主义相结合的创作方法最基本的一条,也是其他的创作方法所不及、难以充分达到的。千余年来,中国山水画为什么那么发达,这与河山壮丽是分不开的。中国向来把江山、河山、山水作为祖国的象征或代词。