学习目标:1、知识与技能(1)会用字母、运算符号表示简单问题的规律,并能验证所探索的规律。(2)能综合所学知识解决实际问题和数学问题,发展学生应用数学的意识,培养学生的实践能力和创新意识。2、过程与方法(1)经历探索数量关系,运用符号表示规律,通过验算验证规律的过程。(2)在解决问题的过程中体验归纳、分析、猜想、抽象还有类比、转化等思维方法,发展学生抽象思维能力,培养学生良好的思维品质。3、情感、态度与价值观通过对实际问题中规律的探索,体验“从特殊到一般、再到特殊”的辩证思想,激发学生的探究热情和对数学的学习热情。学习重点:探索实际问题中蕴涵的关系和规律。学习难点:用字母、运算符号表示一般规律。学习过程:一、创景引入活动:出示一张月历,学生任意选出3×3方格框出的9个数,并计算出这9个数的和,告诉老师,老师就可以说出你所选的是哪9个数。
两道例题,第一道题师生共同分析,第二道题学生自己分析。部分学生在运用方程解答问题时,等量关系的寻找还是有困难,规范解题不够合理,仍需在作业过程中教师给予适当的指导。四、课堂小结这节课我们学习了有关打折销售的知识,其实类似的问题我们小学也遇到过,今天在分析实际问题时又用到了列表法,通过这节课的学习,谈谈你在知识方面的收获。提示学生通过对《日历中的方程》《我变高了》以及本节《打折销售》学习还有以往经验,让学生分组讨论,用一元一次方程解决实际问题的一般步骤是什么?目的:让学生进一步体会方程的作用,这里教师又提到学生的小学学习,目的是想提示学生,将今天的方程解法与小学学过的算术方法相对比。此活动的目的是使学生不再处于被动状态,而成为积极的发现者。
(1)依照此规律,第20个图形共有几个五角星?(2)摆成第n个图形需要几个五角星?(3)摆成第2015个图形需要几个五角星?解析:通过观察已知图形可得:每个图形都比其前一个图形多3个五角星,根据此规律即可解答.解:(1)根据题意得,第1个图中,五角星有3个(3×1);第2个图中,五角星有6个(3×2);第3个图中,五角星有9个(3×3);第4个图中,五角星有12个(3×4);∴第n个图中有五角星3n个.∴第20个图中五角星有3×20=60个.(2)摆成第n个图形需要五角星3n个.(3)摆成第2015个图形需要6045个五角星.方法总结:此题首先要结合图形具体数出几个值,注意由特殊到一般的分析方法.此题的规律为摆成第n个图形需要3n个五角星.三、板书设计教学过程中,强调学生自主探索和合作交流,经历观察、操作、验证、归纳、分析、猜想、抽象、积累、类比、转化等思维过程,从中获得数学知识与技能,体验教学活动的方法,同时升华学生的情感态度和价值观.
目的:课后作业设计包括了两个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;拓广知识,增加学生对数学问题本质的思考而设计,通过此题可让学生进一步运用三元一次方程组解决问题.教学设计反思1.本节课的内容属于选修学习的内容,主要突出对数学兴趣浓厚、学有余力的同学进一步探究和拓展使用,在数学方法和思想方面需重点引导,通过引导,使学生明白解多元方程组的一般方法和思想,理解巩固环节需多注意多种解题方法的引导,并且比较各种解题方法之间的优劣,总结出解多元方程的基本方法.2.作为选修课,在内容上要让学生理解三元一次方程组概念的同时,要让学生理解为什么要用三元一次方程组甚至多元方程组去求解实际问题的必要性,从而掌握本堂课的基础知识.在教学的过程中,要让学生充分理解对复杂的实际问题方程中元越多,等量关系的建立就越直接;充分理解代入消元法和加减法解方程的优点和缺点,有关这一方面的题目要让学生充分讨论、交流、合作,其理解才会深刻.
意图:(1)介绍与勾股定理有关的历史,激发学生的爱国热情;(2)学生加强了对数学史的了解,培养学习数学的兴趣;(3)通过让部分学生搜集材料,展示材料,既让学生得到充分的锻炼,同时也活跃了课堂气氛.效果:学生热情高涨,对勾股定理的历史充满了浓厚的兴趣,同时也为中国古代数学的成就感到自豪.也有同学提出:当代中国数学成就不够强,还应发奋努力.有同学能意识这一点,这让我喜出望外.第六环节: 回顾反思 提炼升华内容:教师提问:通过这节课的学习,你有什么样的收获?师生共同畅谈收获.目的:(1)归纳出本节课的知识要点,数形结合的思想方法;(2)教师了解学生对本节课的感受并进行总结;(3)培养学生的归纳概括能力.效果:由于这节课自始至终都注意了调动学生学习的积极性,所以学生谈的收获很多,包括利用拼图验证勾股定理中蕴含的数形结合思想,学生对勾股定理的历史的感悟及对勾股定理应用的认识等等.
解析:图中∠AOB、∠COD均与∠BOC互余,根据角的和、差关系,可求得∠AOB与∠COD的度数.通过计算发现∠AOB=∠COD,于是可以归纳∠AOB=∠COD.解:(1)∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°.∵∠BOC=30°,∴∠AOB=∠AOC-∠BOC=90°-30°=60°,∠COD=∠BOD-∠BOC=90°-30°=60°.(2)∠AOB=∠AOC-∠BOC=90°-54°=36°,∠COD=∠BOD-∠BOC=90°-54°=36°.(3)由(1)、(2)可发现:∠AOB=∠COD.(4)∵∠AOB+∠BOC=∠AOC=90°,∠BOC+∠COD=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD.∴∠AOB=∠COD.方法总结:检验数学结论具体经历的过程是:观察、度量、实验→猜想归纳→结论→推理→正确结论.三、板书设计为什么,要证明)推理的意义:数学结论必须经过严格的论证检验数学结论的常用方法实验验证举出反例推理证明经历观察、验证、归纳等过程,使学生对由这些方法得到的结论产生怀疑,以此激发学生的好奇心,从而认识证明的必要性,培养学生的推理意识,了解检验数学结论的常用方法:实验验证、举出反例、推理论证等.
煤的价格为400元/吨,生产1吨甲产品除需原料费用外,还需其他费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完,设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.(1)写出m与x的关系式;(2)写出y与x的函数关系式.(不要求写自变量的取值范围)解析:(1)因为矿石的总量一定,当生产的甲产品的数量x变化时,那么乙产品的产量m将随之变化,m和x是动态变化的两个量;(2)题目中的等量关系为总利润y=甲产品的利润+乙产品的利润.解:(1)因为4m+10x=300,所以m=150-5x2.(2)生产1吨甲产品获利为4600-10×200-4×400-400=600(元);生产1吨乙产品获利为5500-4×200-8×400-500=1000(元).所以y=600x+1000m.将m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法总结:根据条件求一次函数的关系式时,要找准题中所给的等量关系,然后求解.
方法总结:利用三角形三边的数量关系来判定直角三角形,从而推出两线的垂直关系.探究点二:勾股数下列几组数中是勾股数的是________(填序号).①32,42,52;②9,40,41;③13,14,15;④0.9,1.2,1.5.解析:第①组不符合勾股数的定义,不是勾股数;第③④组不是正整数,不是勾股数;只有第②组的9,40,41是勾股数.故填②.方法总结:判断勾股数的方法:必须满足两个条件:一要符合等式a2+b2=c2;二要都是正整数.三、板书设计勾股定理的逆定理: 如果一个三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.勾股数:满足a2+b2=c2的三个正整数,称为勾股数.经历一般规律的探索过程,发展学生的抽象思维能力、归纳能力.体验生活中数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.
8.一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0)则光线从A点到B点经过的路线长是( )A.4 B.5 C.6 D.7第四环节课堂小结1、关于y轴对称的两个图形上点的坐标特征:(x , y)——(- x , y)2、关于x轴对称的两个图形上点的坐标特征:(x , y)——(x , - y)3、关于原点对称的两个图形上点的坐标特征:(x , y)——(- x , -y)第五环节布置作业习题3.5 1,2,3四、 教学反思通过“坐标与轴对称”,经历图形坐标变化与图形的轴对称之间的关系的探索过程, 掌握空间与图形的基础知识和基本技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发学生对数学学习的好奇心与求知欲,学生能积极参与数学学习活动;积极交流合作,体验数学活动充满着探索与创造。教学中务必给学生创造自主学习与合作交流的机会,留给学生充足的动手机会和思考空间,教师不要急于下结论。事先一定要准备好坐标纸等,提高课堂效率。
1.会用计算器求平方根和立方根;(重点)2.运用计算器探究数字规律,提高推理能力.一、情境导入前面我们通过平方和立方运算求出一些特殊数的平方根和立方根,如4的平方根是±2,116的平方根是±14,0.064的立方根是0.4,-8的立方根是-2等.那么如何求3,189,-39,311的值呢?二、合作探究探究点一:利用计算器进行开方运算 用计算器求6+7的值.解:按键顺序为■6+7=SD,显示结果为:9.449489743.方法总结:当被开方数不是一个数时,输入时一定要按键.解本题时常出现的错误是:■6+7=SD,错的原因是被开方数是6,而不是6与7的和,这样在输入时,对“6+7”进行开方,使得计算的是6+7而不是6+7,从而导致错误.K探究点二:利用科学计算器比较数的大小利用计算器,比较下列各组数的大小:(1)2,35;(2)5+12,15+2.解:(1)按键顺序:■2=SD,显示结果为1.414213562.按键顺序:SHIFT■5=,显示结果为1.709975947.所以2<35.
三、拓展师:浏阳河十曲九弯,碧波荡漾,你听,在浏阳河畔传来了阵阵歌声(听歌曲《浏阳河》)师:你觉得歌曲《浏阳河》与古筝曲《浏阳河》有什么异同?(请学生各抒己见,说说歌曲与乐曲的异同)师:的确,无论是歌曲还是乐曲都非常的优美动听,都表达了对浏阳河的赞美、热爱之情。四、延伸师:今天我们学了民族乐器—古筝,你知道的民族乐器还有哪些?生:二胡、葫芦丝、琵琶、扬琴、笛子、萧师:李老师这里有几段音乐,请你来辨别一下,哪一段音乐是用古筝演奏的?(辨别古筝的音色)师:今天通过《浏阳河》,咱们认识了古筝,并熟悉了古筝的音色。在以后,我们还将一一的学习另外的民族乐器。五、小结《浏阳河》的旋律六十年前传遍了大江南北,今天的它依旧流行在我们的心中,如今它更是唱响了世界,希望大家永远记住浏阳河的声音,让这旋律伴你成长。
一、说教材: 德国作曲家卡尔.泰克的《同伴进行曲》是进行曲中的名作。它轻快优美的旋律为全世界人所熟悉。下面让我们走进泰克的世界,感受音乐之美。这是一首用管乐器(包括铜管乐器、木管乐器及打击乐器)演奏的进行曲。乐曲为复三段体结构。 在4小节引子之后,由高音乐器奏出了刚健、有力的进行曲主题主题旋律的后半部分出现了多次大跳。音乐显得更为明朗、活泼:当主题反复一遍时,一个柔美如歌的对位旋律与刚刚节奏短促的主题旋律相伴进行,仿佛两个性格迥异的好友携手同行:在主题又作了一次变化重复后,乐曲进入中部,中低音乐器奏出平静温和的旋律,音调上下回旋,好像是对昔日好友的深情怀念。第三部分是第一部分的变化再现。随着第一部分的主题再次出现,乐曲在热情洋溢的气氛中结束。
本课是人教版音乐课程标准实验教科书第五册第三课的内容。歌曲《哦!苏珊娜》是美国作曲家福斯特的作品中深受大众喜爱并且流传最广的一首。它表现了对朋友真诚的情谊和对生活中美好事物的向往。全曲有八个乐句,其中四个乐句是完全相同的。另两个乐句和这四个乐句仅在句尾的落音上稍作变化,也就是说整个曲调六个乐句都是重复第一乐句轻快、流畅的音乐主题。歌曲中间部分有一个对比乐句,这个乐句前半部分由两个八分音符和一个切分节奏的运用,使得旋律在感情色彩上产生了变化,从而把歌曲推向高潮,深化了“朋友”这一主题情感。后半乐句又回到了主题音调上,使单一的音乐主题在不断反复之中又有起伏,仿佛在倾诉对远方朋友的思念之情。本课的教学内容:1、学唱歌曲《哦!苏珊娜》2、学跳邀请舞
[设计意图]:利用交互式的电脑课件演示,创设教学情境,使学生通过了解蒙古族的风土人情开拓文化视野,从而产生对蒙古族的热爱之情,并培养学生欣赏音乐的兴趣。(三)新课导入有一首曲子淋漓尽致的刻画了蒙古族人民在赛马场上的情景,那就是由我国作曲家黄海怀创作的二胡独奏曲《赛马》。介绍二胡:(教学重点)是我国的民族传统乐器,它是通过琴弓与两根琴弦磨擦产生振动传到鼓面上发出的声音。二胡可以演奏各种情绪的音乐,不但能演奏优美婉转的乐曲,还能表现热烈欢快的旋律。更能模仿一些特殊的声音。二胡演奏法其中的三种:连弓、连顿弓、拨弦。二胡由琴筒、琴皮、琴杆、琴头、琴轴、千斤、琴马、弓子和琴弦等部分组成,另外还有松香等附属物。
在创编过程中,学生用自主、合作的学习方式来为歌曲创编舞蹈动作,提高了他们的创编能力和表演能力。也进一步让学生感受到歌曲的美,体会到丰收的喜悦心情。最后师生一起舞蹈《桔梗谣》。四、知识拓展最后观看歌舞《丰收的喜悦》。让学生充分体会丰收的喜悦心情,同时增强了学生的民族意识和爱国主义情操。五、让学生说说自己的收获即对这节课进行了小节又紧扣主题。六、板书设计:桔 梗 谣欢乐、 愉悦装饰音七、作业设计:课后把这首歌唱熟练,有兴趣的同学为这首个曲创编更合适的舞蹈动作来为大家表演。我尽可能地将这节唱歌课作到设计合理、有效,让预设的课堂充满魅力。我觉得课上的语言如果在精湛一些会美化整节课,还需要进一步的锻炼。对音乐差生关注的还不是很多。这节课还有很多不足之处,请各位评委老师提出宝贵意见。
鼓励学生创编恰当动作边唱边舞。创设一个情境,让学生们在欢快、喜悦的情境中体会歌曲所要表达的主题。这样不仅能使学生积极展开想象,引发创作灵感,而且有效的培养学生的审美能力。另一方面,我还重视音乐文化方面去开拓,激发学生对音乐的热爱。(二)、课堂小节小小酒窝是甜蜜的,也是幸福的。在我们每个同学身边,有亲爱的爸爸、妈妈、爷爷、奶奶......有亲爱的老师同学,有这么多关心爱护你们的人,你们的成长进步是他们的骄傲。你们是多么幸福啊,老师真为你们高兴。在这里请对他们真诚的说一声“谢谢你们”!【本课教学内容的主题为“热爱童年生活,珍惜今天的幸福!”这个环节,就是促使学生关注自己身边的事物,学会去珍爱自己的生活!从而深化音乐作品所表达的内涵。】当然,以上所述只是我对本课的设想,但不管怎样,我认为一堂音乐课只要能成为学生享受音乐美的圣殿,就是我们教师应该追求的境界。
然后出示视频资料,让学生们感到我们又来到了朝鲜半岛的朝鲜。2、欣赏《清津浦船歌》1) 初听:学生感受具有三拍子倾向的6/8音乐的《清津浦船歌》,说出音乐内容。2)《清津浦船歌》是表现朝鲜半岛清津浦渔人劳动生活的歌曲。衬词表现出集体劳动中人们的乐观精神。起伏强弱的节奏和渔人的水上生活情景很好地结合在一起,生动形象地展示了清津浦渔民的生活。3)复听:找出歌曲中模仿鼓声的象声词,跟着音乐敲击节奏一起感受清津浦人的乐观精神。(不经意的举动,其实是对学生创造力的培养。)(四)音乐活动:比比谁的耳朵灵老师分别放了中国、日本、朝鲜的音乐片段,学生回答分别是哪国音乐?(这既能拓宽学生的音乐视野又是对本课内容的当堂检测,回扣了教学目标)(五)课堂小结:今天我们参与了第一次亚洲之旅,学习了东亚日本、朝鲜的民歌。让我们相约,下次一起走进印度、泰国和印尼!
4、跟琴演唱2-3遍,教师弹奏歌曲学生跟琴演唱。要求:(1)速度不宜过快,学生用中速跟琴演唱(2)声音自然统一气息通畅,避免让学生用喊叫的声音演唱,注意保护嗓音。(三)表现歌曲1、学生齐唱,用歌声唱出对妈妈的爱。2、师生合作,用舞蹈跳出与妈妈的情。3、小组讨论交流:给妈妈送上真诚的祝福。(四)课堂小结五、说预设与反思音乐是一种情感教育。学生通过对音乐作品情绪、思想的感受和理解,使其情感世界受到感染和熏陶,在潜移默化中建立起对美好事物的挚爱之情,使学生在真善美的音乐艺术世界里受到高尚的情操的熏陶。通过本堂课学习,主旨在于让学生关心父母,知道父母抚育自己长大很不容易。任何一节看似准备充分的课,难免顾此失彼、多有失误,本节课也不例外。鉴于学习内容多、信息量大的特点,使得这节课突出的问题是时间的分配问题和歌曲的情感理解问题,有待进一步在演唱中体会。
音乐新课标提供自主合作探究的学习方式,为了让学生进一步感受歌曲的美,我会提问:歌曲为我们展现了芳香四溢的茉莉花,当你面对这样美的花朵时,你还会用什么方式来表现歌曲?学生分组讨论,诱发学生展现自我,培养他们的合作意识、创新意识和创新精神。这时学生以小组为单位,有的用边画边唱的形式,有的用优美的舞蹈表现歌曲,最后全班同学用电子琴边弹边唱《茉莉花》,将课堂气氛推向高潮。在音乐声中,我的本堂音乐课也就轻松的完成了。(四)说教学评价反思本节课的教学,我始终围绕歌曲《茉莉花》为主线,在学生已有的知识水准上,通过听、说、唱、奏、演等艺术表现手法让学生在音乐活动的过程中感受美、表现美、创造美。学生在活动中积极主动。以多媒体课件作为辅助手段,让学生在视觉与共同感观中感受艺术的魅力。
本课我的设计初衷是希望同学们能通过节奏训练,视唱训练将歌曲一步步潜移默化的吸收和掌握。但从学生的表现来看,并不受用。主要原因我反思了下,第一,没有考虑到学生的实际情况,在学生的概念里对音乐课就是玩一玩唱一唱就可以了,讲过的知识也只是听一听而已,并不会刻意的去记一记。学生们的底子也比较薄弱,所以在课堂上所提到的知识点,学生基本上已经忘得差不多了,使练习环节没有达到预期的效果。第二,在课堂上我太过注重将本课设计内容全部完成,却忽视了学生学习情况。第三,在教学中,很多地方太过于专业,使学生上课觉得与知识产生的距离感,导致学生对本课的兴趣减弱。对于以上那个问题,在今后的教学中我会特别注意,音乐基础知识会用一些简单易懂的方法在每节课一点点渗透,让他们在无形之中掌握。课堂上会多关注学生学习情况,掌握情况。切实从学生们的实际出发,让他们真正爱上音乐课,受益于音乐课。