提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

师德工作计划

  • 北师大初中数学九年级上册菱形的判定2教案

    方法三:一个同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。通过探究,得到: 的四边形是菱形。证明上述结论:三、例题巩固课本6页例2 四、课堂检测1、下列判别错误的是( )A.对角线互相垂直,平分的四边形是菱形. B、对角线互相垂直的平行四边形是菱形C.有一条对角线平分一组对角的四边形是菱形. D.邻边相等的平行四边形是菱形.2、下列条件中,可以判定一个四边形是菱形的是( )A.两条对角线相等 B.两条对角线互相垂直C.两条对角线相等且垂直 D.两条对角线互相垂直平分3、要判断一个四边形是菱形,可以首先判断它是一个平行四边形,然后再判定这个四边形的一组__________或两条对角线__________.4、已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F求证:四边形AFCE是菱形

  • 北师大初中数学九年级上册菱形的判定1教案

    (1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.

  • 北师大初中数学九年级上册相似多边形1教案

    (2)如果对应着的两条小路的宽均相等,如图②,试问小路的宽x与y的比值是多少时,能使小路四周所围成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根据两矩形的对应边是否成比例来判断两矩形是否相似;(2)根据矩形相似的条件列出等量关系式,从而求出x与y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假设两个矩形相似,不妨设小路宽为xm,则30+2x30=20+2x20,解得x=0.∵由题意可知,小路宽不可能为0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,则30+2x30=20+2y20,所以xy=32.∴当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.方法总结:因为矩形的四个角均是直角,所以在有关矩形相似的问题中,只需看对应边是否成比例,若成比例,则相似,否则不相似.

  • 北师大初中数学九年级上册相似多边形2教案

    (2)相似多边形的对应边的比称为相似比;(3)当相似比为1时,两个多边形全等.二、运用相似多边形的性质.活动3 例:如图27.1-6,四边形ABCD和EFGH相似,求角 的大小和EH的长度 .27.1-6教师活动:教师出示例题,提出问题;学生活动:学生通过例题运用相似多边形的性质,正确解答出角 的大小和EH的长度 .(2人板演)活动41.在比例尺为1﹕10 000 000的地图上,量得甲、乙两地的距离是30 cm,求两地的实际距离.2.如图所示的两个直角三角形相似吗?为什么?3.如图所示的两个五边形相似,求未知边 、 、 、 的长度.教师活动:在活动中,教师应重点关注:(1)学生参与活动的热情及语言归纳数学结论的能力;(2)学生对于相似多边形的性质的掌握情况.三、回顾与反思.(1)谈谈本节课你有哪些收获.(2)布置课外作业:教材P88页习题4.4

  • 北师大初中九年级数学下册二次函数2教案

    4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x) (100+100x)(0≤x≤2)]将函数关系式y=x(20-2x)(0 <x <10=化为:y=-2x2+20x (0<x<10)…(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D (0≤x≤2)…(2)三、观察;概括1.教师引导学生观察函数关系式(1)和(2),提出问题让学生思考回答;(1)函数关系式(1)和(2)的自变量各有几个? (各有1个)(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、归结为:自变量x为何值时,函数y取得最大值。2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数, a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

  • 北师大初中九年级数学下册切线长定理教案

    (3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.

  • 北师大初中九年级数学下册圆教案

    解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.

  • 北师大初中九年级数学下册圆的对称性教案

    我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.

  • 北师大初中九年级数学下册正切与坡度2教案

    教学目标:1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。2、了解计算一个锐角的正切值的方法。教学重点:理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。教学难点:计算一个锐角的正切值的方法。教学过程:一、观察回答:如图某体育馆,为了方便不同需求的观众设计了多种形式的台阶。下列图中的两个台阶哪个更陡?你是怎么判断的?图(1) 图(2)[点拨]可将这两个台阶抽象地看成两个三角形答:图 的台阶更陡,理由 二、探索活动1、思考与探索一:除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢?① 可通过测量BC与AC的长度,② 再算出它们的比,来说明台阶的倾斜程度。(思考:BC与AC长度的比与台阶的倾斜程度有何关系?)答:_________________.③ 讨论:你还可以用其它什么方法?能说出你的理由吗?答:________________________.2、思考与探索二:

  • 北师大初中九年级数学下册正弦与余弦1教案

    解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.

  • 北师大初中九年级数学下册正弦与余弦2教案

    [教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.

  • 人教部编版语文九年级下册出师表教案

    2.分析写作特点。本文是如何把议论、抒情和叙事融为一体的?预设 本文是奏章,内容是作者出师前向后主刘禅陈述意见,提出修明政治、兴复汉室的主张。因此,全文以议论为主,在议论中融以叙事和抒情,以做到对刘禅晓之以理、动之以情而达到劝谏的目的。论述切中要害,分析透辟,针对性强;寓情于议,情理交融,言辞恳切,说服力强。叙事,寓情于事,委婉动人,感情真挚。所叙之事如推荐贤才,讲身世,谈经历,都是为议论服务,使他对刘禅提出的建议与要求有理有据,更能使人信服。 结束语:诸葛亮知恩图报,忠心为国。他有高度的责任感、使命感,他为国家鞠躬尽瘁,死而后已,当我们吟诵“出师未捷身先死,长使英雄泪满襟”的诗句时,会深深地体味出杜甫对诸葛亮的仰慕和惋惜之情;当我们解读“出师一表真名世,千载谁堪伯仲间”这两句诗时,更是深深地被陆游满腔豪情所感染。四、布置作业

  • 旷工解除劳动合同

    三、甲方为乙方缴纳社会保险费至年月日止。四、甲、乙双方在此确认:劳动合同履行期间,双方已依法签订了书面的劳动合同,甲方依法履行了义务,包括乙方应享有的社会保险、劳动保护等。双方无违反劳动法律、法规的行为。解除劳动合同之日前的劳动报酬(含加班工资、奖金、补贴等)已结清。乙方不再因为原劳动合同的履行、解除,向甲方要求支付其他任何费用、补偿或赔偿。

  • 员工劳动合同模板

    六、劳动保护、劳动条件和职业危害防护甲方负责对乙方进行职业道德、业务技术、劳动安全卫生及有关规章制度的培训。甲方按照国家劳动安全卫生的有关规定为乙方提供必要的安全防护设施,发放必要的劳动保护用品。对乙方从事接触职业病危害作业的,甲方应按国家有关规定组织上岗前和离岗时的职业健康检查,在合同期内应定期对乙方进行职业健康检查。甲方依法建立安全生产制度。乙方严格遵守甲方依法制定的各项规章制度,不违章作业,防止劳动过程中的事故,减少职业危害。乙方有权拒绝甲方的违章指挥,对甲方及其管理人员漠视乙方安全健康的行为,有权提出批评并向有关部门检举控告。

  • 生产劳工劳动合同

    甲方因生产经营需要,经考核,录用乙方(姓名)为(工程名称)工人,遵照国家有关劳动法律法规,经双方协商,签订本合同。第一条甲方录用乙方从事(工作名称)。第二条劳动合同期限从年月日起至年月日时止。其中试用期限为个月,至年月日止。第三条甲方的基本权利义务是:一、根据生产经营的需要和本单位的规章制度及本合同的各项条款对乙方进行管理。保护乙方的合法权益,按规定付给乙方工资、奖金、津贴以及保险福利和其他政策性补贴。

  • 项目部员工劳动合同

    第九条 劳动纪律(一)乙方应遵守国家的各项规定和企业的《员工手册》以及单位的各项规章制度。(二)乙方如触犯刑律,受法律制裁或违反《员工手册》和甲方规定的其它规章制度,甲方有权按《员工手册》等规定,分别给予乙方相应的纪律处分,直至开除,因乙方违反《员工手册》和其它规章制度,造成本企业利益受到损害,如企业声誉的损害、财产的损坏,甲方根据严重程度,可采取一次性罚款措施。

  • 工厂劳动合同范本

    三、服务约定1、乙方必须自觉遵守甲方规章制度,否则按规定处罚或辞退;2、乙方在职期间须认真做好岗位本质工作,否则甲方有权作出降职、减薪等处理;3、甲方为乙方免费提供食宿等其它福利待遇及劳动报酬;4、协议期内甲方或乙方不得单方面解除本协议。四、违约责任1、乙方在协议期内不能提出辞职(特殊情况经公司上级领导审批办理);2、乙方在协议期内离职,未满一年公司扣除培训费________元,工作满一年未满两年提出辞职扣除培训费________元,协议期满不扣培训费;3、协议期内,乙方不能胜任其本职工作,又不愿意调任其它工作岗位的甲方有权辞退乙方,并扣除培训费________元;

  • 建筑施工劳动合同

    四、工资保险待遇第八条双方约定的工资不得低于XX省政府颁布的当地最低工资标准和本企业工资集体协商的最低标准。1、计时工资乙方在试用期间的工资为每月(日)元,试用期满后月(日)工资为元。2、按工程量计付工资(1)按工程量单价计取工资;(2)按工程量总量总价计取工资。双方约定的工程量单价不得低于XX省建设工程定额人工费标准。实行按工程量计付工资的,每月支付工资额不得低于当月完成工程量的70%。甲方应在每月日前以货币形式计发乙方的工资,并由乙方签字确认。甲方在劳动合同终止、解除后5天内应当一次性付清乙方的工资。甲乙双方对工资支付的其他约定:第九条甲方应为乙方办理养老保险、工伤保险和医疗保险手续,并为乙方缴纳养老保险、工伤保险和医疗保险费用。

  • 旷工解除劳动合同

    甲乙双方于______年____月____日签订劳动合同,合同期至______年____月____日,现甲乙双方同意解除劳动合同关系。根据《中华人民共和国劳动法》及相关法律、法规的规定,经双方协商一致,签订本协议如下:第一条自______年____月____日起,解除双方签订的劳动合同,双方的权利义务随之终止。

  • 施工组长劳动合同

    三、劳动保护和劳动条件第五条甲方应当在乙方进入施工现场当天对乙方进行入场三级安全教育,并组织对乙方学习成果的书面考试,考试结果甲方应保存在施工现场备查,考试不合格的不得在现场施工。甲方应当对从事电气焊、土建、水电设备安装等特殊工种的乙方进行岗前培训,乙方取得相应的操作证书方可上岗。第六条甲方根据生产岗位的需要,按照国家劳动安全、卫生的有关规定为乙方配备必要的安全防护措施,发放必要的劳动保护用品。甲方为乙方提供的宿舍、食堂、饮用水、洗浴、公厕等基本生活条件应达到安全、卫生要求,其中建筑施工现场要符合《建筑施工现场环境与卫生标准》(JGJl4620xx)第七条甲方将根据国家有关法律法规,建立安全生产制度;乙方应当严格遵守甲方的劳动安全制度,严禁违章作业,防止劳动过程中的事故,减少职业危害。

上一页123...115116117118119120121122123124125126下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!