2、引导幼儿观察两个部分数之间的互补关系。3、启发幼儿运用呼唤的方式省略相关的几组分合式。重点:学习8的组成难点:引导幼儿观察两个部分数之间的互补关系活动过程:一、集体活动复习7的组成---碰球今天我们来碰球,我的球和你们的球合起来是7。
1、 学习按序将9分成不同的两份,感知9的分合。2、 继续感知两个部分数之间的互补关系。活动准备: 教具:9朵大小、颜色不同的话,数字,分合号。学具:幼儿操作材料。重点、难点分析: 重点:引导幼儿学习按序将9分成不同的两份,感知9的分合 难点:在上一节课的基础上继续感知两个部分数之间的互补关系
1、 谈话引入新课六一快到了。小朋友们在老师的带领下忙着布置自己的教室呢!可是他们遇到了一些数学上的问题,你能帮他们一快解决吗?2、教学例1。(1)、投影出示主题图引导学生仔细观察。说说他们遇到了什么问题?(2)、引导学生解决问题并列出算式。板书:56÷8(3)、引导学生得出算式的商。问:你是怎么计算的?(想乘算除)(4)、学生独立解决:要是挂7行呢?你能够解决吗?学生说出自己的计算结果,并把求商的过程跟大家说一说。2、 小结:在今天的学习中我们不仅帮小朋友们解决了数学问题,而且还进一步学会了利用乘法口诀来求商。在以后的除法中只要大家能够熟记口诀,就能很快算出除法的商了。
在因式分解的几种方法中,提取公因式法师最基本的的方法,学生也很容易掌握。但在一些综合运用的题目中,学生总会易忘记先观察是否有公因式,而直接想着运用公式法分解。这样直接导致有些题目分解错误,有些题目分解不完全。所以在因式分解的步骤这一块还要继续加强。其实公式法分解因式。学生比较会将平方差和完全平方式混淆。这是对公式理解不透彻,彼此的特征区别还未真正掌握好。大体上可以从以下方面进行区分。如果是两项的平方差则在提取公因式后优先考虑平方差公式。如果是三项则优先考虑完全平方式进行因式分解。培养学生的整体观念,灵活运用公式的能力。注重总结做题步骤。这章节知识看起来很简单,但操作性很强的,相同或者相似的式子比较熟悉而需要转化的或者多种公式混合使用的式子就难以入手,基础不好的学生需要手把手的教,因此,应该引导学生总结多项式因式分解的一般步骤①如果多项式的各项有公因式,那么先提公因式;
2、学习按量排序,并摆放相应的物体。 3、在活动中注意倾听问题,并能大胆地回答。 活动准备: 1、经验准备:幼儿理解1、2、3的数量。 2、物质准备: 教具:早餐食物图片(1个鸡蛋,1碗面条,2个包子,2杯牛奶,3片面包,3个馒头),其它物体图片(数量为1~3,每个数量为2~3张),1~3的数字卡各1张。 学具:1、《幼儿用书》(P5)人手一册,幼儿人手一支笔。 2、剪下《幼儿用书》(P21、22页),1~3的数字卡,1~3的实物卡(每个数量为3~4张),分类盒。 活动过程: 一、早餐有几个。 1、教师:妈妈为大家准备了一些早餐,我们一起来看看是什么?教师分别出示早餐实物图片(1个鸡蛋,1碗面条,2个包子,2杯牛奶,3片面包,3个馒头),引导幼儿目测或默数实物的数量。 2、引导幼儿给早餐按量排序:每一种早餐一样多吗?你能按从少到多的顺序给早餐排排队吗?请个别幼儿示范,集体检查。
[幼儿分析] 中班的孩子正是对自己身边的周围事物感兴趣的时期,语言表达不是很完整,也没有什么主见。经过教师的引导和帮助,他们也能将事情做的很好。因此,在活动时,为他们提供一些蕴涵教育目标的,适合他们的材料,让孩子主动参与、积极探索,通过活动,发展孩子的思维,鼓励他们从不同角度思考问题。 [设计思路] 幼儿喜欢探究生活中的数学现象,对长方形、梯形、半圆形、椭圆形产生兴趣和好奇心,为了开展分类、排序等探索活动在生活和游戏中运用已有的经验进行大胆联想和创造;幼儿还需要在各种操作时间中进一步学习、发现,为此设计了本节活动。 [活动目标]1、培养幼儿对拼图添画的兴趣。2、发展幼儿想象力和创造力。3、引导幼儿在认识几何图形的基础上,通过联想画成简单的物体,并表现出其主要特征。
本次活动让幼儿统计生日、居住楼层、家庭人口等,在上次活动中孩子们已收集了每个幼儿的基本情况并做记录,但有些孩子很快便发现这些原始资料多而杂不便记忆和记录,我紧紧抓住这一契机把问题抛给孩子,引导幼儿通过统计解决这一问题。在统计的过程中幼儿运用图画、文字、数字等符号进行记录,通过孩子们间的协商、分工、合作完成统计。由于原始资料较多加之我班幼儿对统计接触不多,故此活动将是对孩子合作能力的挑战同时也是孩子体验成功的过程。 在今天的活动中幼儿可能有争论、有矛盾,更有不足的地方,但站在孩子的发展角度,我更多的注重活动过程,注重孩子们交往能力、分工合作能力和解决问题的能力是否得到了真正提高,这才是我密切关注的问题。目的要求:1、通过统计伙伴的生日、居住楼层、家庭人口等,初步建立统计的概念2、积极寻找解决问题的方法 3、体验合作与成功的快乐。
活动目标:1、在剥一剥、记一记中发现一颗花生中花生米数最多的是几粒。2、初步尝试用统计的方法了解一堆花生中几粒花生米的花生最多。3、学习在合作中做事。活动准备:一盘花生,每组三个盘子,记录纸、笔、四列小火车活动过程:一、 猜一猜,剥一剥,感知花生内花生米数量的不同。1、情景谈话,梳理经验。——你喜欢吃花生吗?……——你吃过的花生里有几颗花生米?2、猜一猜,剥一剥——教师出示一颗花生:猜猜这颗花生里有几粒花生米?你是怎么知道的?——幼儿选一颗花生,先猜猜里面的花生米粒数,再剥开验证。——你在剥的过程中发现了什么秘密?小结:花生里花生米的数量不相同。
1、培养幼儿的倾听力2、学习动物的叫声准备:1、五种动物的图片、挂件。2、录有动物叫声的磁带3、图谱一张。过程:一、放动物录音,激发幼儿的兴趣。“你们想去森林里玩吗?”那我们就坐着火车一起去吧。幼儿坐到位置。“森林晨的小动物听到小朋友来玩,非常高兴,听,它们来欢迎我们了。”放录音一遍。“你听见有哪些小动物来欢迎我吗?”幼儿自由说。小结:小朋友真能干,都听出来了,它们是小猫,小狗,小鸭,公鸡,青蛙。二、学小动物的叫声。小动物的叫声可真好听,让我们一起来学学它们的叫声吧。1) 放录音“你听到是谁的声音呢?”“那我们就把它请出来吧.(出示图片)”“它是怎么叫的呢?”“我们一起来学学它的叫声吧。”“谁愿意把你学的叫声,来叫给大家听一听呢?”每次叫四五个幼儿。2)、依次学习以下几种动物的叫声。三、游戏1)、幼儿自由选挂件。小动物来到我们班了,那你们喜欢谁呢?你可以自己去选小动物,但是小动物要我告诉大家,你们去选它们时,要一边学着佗们的动作,一边学着它们的叫声,如果小动物没有听到你学它们的动作,你学它们的叫声,那小动物就不请你了,知道了吗?
活动准备: 1、经验准备:幼儿学过7以内各数加减法及8的组成。 2、物质准备: ——教具:符号底板(底板分成四格,两格上写有加号和等号,另外两格写有减号和等号,符号中间有空间便于写数字),8、3、5三个数字各一张,笔一支。 ——学具:《幼儿用书》(P14、15、16),幼人手一支笔。活动过程: 1、奇怪的门卡。 ——教师:爸爸带花花到其他城市去游玩,他们住饭店时,服务员给他们出了一道题,我们一起去看一看。 ——教师(出示符号底板和8、3、5三个数字):服务员说,当他们用这三个数字在门卡上摆出四道力口减算式,才能顺利地拿到门卡进房间。你们愿意来试试吗? ——幼儿思考。请个别幼儿来演示,说一说自己摆的是什么算式,集体检查。鼓励幼儿用三个数摆出四道不同的加减算式。
3、发展幼儿对数的辨别能力和快速反应能力。 准备: 各种型号的轴承若干,钢球零件若干,记录纸 过程: 1、导入:教师出示数字宝宝,3、7、6告诉幼儿数字宝宝想和我们大家玩找朋友的游戏,游戏要求请与数字同等数量的幼儿玩找朋友游戏,大家唱完歌曲之后要两两小朋友拥抱在一起。让幼儿去发现规律,3、7个小朋友两两小朋友拥抱总有一个单的,6个小朋友两两拥抱就都可以找到好朋友。 2、引出班级的钢球宝宝也想和数字宝宝们玩这个找朋友的游戏,请幼儿帮忙。 教师讲述操作方法:拿与数字相等的钢球宝宝,让他们两两找好朋友,都找到好朋友的在记录纸上用一种方法记录,有一个没有找到好朋友的用另外一种方法记录。
1.自学文本出示书中情境图:有21架飞机要参加飞行表演,怎样飞呢?想请同学们帮忙设计编组方案,下面小组同学合作,用学具摆一摆,设计出自己的编组方案,看哪个小组设计的方案最多?学生小组合作,边摆学具边说方案。2.交流研讨哪组想到前面来汇报一下你们制定的飞行方案?(不必强调平均分,如有小组同学说出每组有7(3)架,可以分成3(7)组,或每7(3)架一组,可以分成3(7)组,老师在给予肯定的同时可以问其它小组摆法一样吗?之后板书算式:21÷7=3,21÷3=7。如果学生没说出平均分,老师可引导说:有时表演的每组也可同样多)
解:四边形ABCD是平行四边形.证明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.方法总结:此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出△AFD≌△CEB.三、板书设计1.平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形.2.平行四边形的判定定理(2)一组对边平行且相等的四边形是平行四边形.在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.
材料四:印度提倡“只生一个好”——鼓励三人小家庭 生男生女都一样材料五:印度尼西亚《人口发展与幸福家庭法》材料六:我国基本国策 计划生育(小结)通过对以上材料的分析我们可以得出这样的结论,不同的国家应该采取不同的人口政策,对与发达国家来说人口增长缓慢,应采取鼓励生育,吸引移民的措施;发展中国家人口增长较快,实行控制人口的政策已经迫在眉睫。不论是发达国家还是发展中国家共同的目标就是实现环境人口和社会经济的协调发展。【课堂小结】这节课我们主要学习了人口的自然增长,影响人口自然增长的因素有哪些?(人口的自然增长率和人口的基数)世界人口的数量在不同的历史时期表现出不同的特征,同一历史时期的不同地区,人口数量的增长又有不同的特点。面对不同的人口形势,各国应采取不同的人口政策。
课程名称数学课题名称8.2 直线的方程课时2授课日期2016.3任课教师刘娜目标群体14级五高班教学环境教室学习目标知识目标: (1)理解直线的倾角、斜率的概念; (2)掌握直线的倾角、斜率的计算方法. 职业通用能力目标: 正确分析问题的能力 制造业通用能力目标: 正确分析问题的能力学习重点直线的斜率公式的应用.学习难点直线的斜率概念和公式的理解.教法、学法讲授、分析、讨论、引导、提问教学媒体黑板、粉笔
课题序号 授课班级 授课课时2授课形式新课授课章节 名称§9-1 平面基本性质使用教具多媒体课件教学目的1.了解平面的定义、表示法及特点,会用符号表示点、线、面之间的关系—基础模块 2.了解平面的基本性质和推论,会应用定理和推论解释生活中的一些现象—基础模块 3.会用斜二测画法画立体图形的直观图—基础模块 4.培养学生的空间想象能力教学重点用适当的符号表示点、线、面之间的关系;会用斜二测画法画立体图形的直观图教学难点从平面几何向立体几何的过渡,培养学生的空间想象能力.更新补充 删节内容 课外作业 教学后记能动手画,动脑想,但立体几何的语言及想象能力差
教 学 过 程教师 行为学生 行为教学 意图 *揭示课题 8.3 两条直线的位置关系(二) *创设情境 兴趣导入 【问题】 平面内两条既不重合又不平行的直线肯定相交.如何求交点的坐标呢? 图8-12 介绍 质疑 引导 分析 了解 思考 启发 学生思考 *动脑思考 探索新知 如图8-12所示,两条相交直线的交点,既在上,又在上.所以的坐标是两条直线的方程的公共解.因此解两条直线的方程所组成的方程组,就可以得到两条直线交点的坐标. 观察图8-13,直线、相交于点P,如果不研究终边相同的角,共形成四个正角,分别为、、、,其中与,与为对顶角,而且. 图8-13 我们把两条直线相交所成的最小正角叫做这两条直线的夹角,记作. 规定,当两条直线平行或重合时,两条直线的夹角为零角,因此,两条直线夹角的取值范围为. 显然,在图8-13中,(或)是直线、的夹角,即. 当直线与直线的夹角为直角时称直线与直线垂直,记做.观察图8-14,显然,平行于轴的直线与平行于轴的直线垂直,即斜率为零的直线与斜率不存在的直线垂直. 图8-14 讲解 说明 讲解 说明 引领 分析 仔细 分析 讲解 关键 词语 思考 思考 理解 思考 理解 记忆 带领 学生 分析 带领 学生 分析 引导 式启 发学 生得 出结 果
1、教材的地位和作用本章教材是初中数学八年级第十四章的内容,是初中数学的重要内容之一。一方面,这是在学习了函数概念的基础上,对函数知识的进一步深入和拓展;另一方面,又为学习反比例函数、二次函数等知识奠定了基础,是进一步研究数学应用的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。 2、学情分析针对即将面临中考的学生来说,在具有了一定知识的基础上,培养他们分析问题和解决问题的能力尤为重要,因此本节课除了让学生进一步熟悉本章知识以外,重在培养学生的能力。从认知状况来说,学生在此之前已经学习了函数的定义,对函数的三种表示法已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于一次函数的性质的理解和应用,仍然是部分学生所存在的困惑,所以在教学过程中要充分利用一些函数的图象,通过直观教学让学生更加深入的理解一次函数的性质。
以人为本,说学情为了更好地掌握学情,课前可以进行调查。课前我对学生访谈的内容为:1、你认为你的优点是什么?2、你在学习中遇到过困难和烦恼吗?能说说你在学习上遇到的困扰是什么吗?经过课前调查了解学生存在的问题并分析原因,以便有的放矢地进行教学。将学生学习生活实际与教材相关事例进行整合,从生活切入,进入文本,走向真实的学习实践。本单元是学生升人小学中年段后的第一个学习单元。三年级的小学生经过低年段两年的学习,已经积累了一些学习经验,这为探究如何进一步提高学习效率提供了可能的条件。学生学习经验和经历是教学的切入口,学生每天都在经历着学习,但他们对“更快更好的学习”缺乏科学认识。一部分学生还依赖于老师、家长的监督和帮助,学习主动性不强,兴趣缺乏。但他们跟一二年级的学生也有明显的差别,自我认识正悄悄萌芽,对事物的认识逐渐由直观向理性过度,这为教学的展开提供了契机。
二)重点、难点及成因分析:重点:反比例函数概念、图象和性质。概念是确定解析式的前提,图象和性质是其灵魂,是数形结合思想方法的具体表现,故是本节的重点。难点:画反比例函数的图象。它的图象有两个分支,且其变化趋势又非直线,学生初次接触,会感到有些困难。(