1. 独立负责公众号的运营规划与内容编辑,创建、定位与每日的图文编辑与推送,结合线下营销活动实现公众号从零到千的真实增粉。2. 负责挖掘产品及运营各项数据,通过对数据的分析,发现用户规律。3. 充分了解用户需求,收集用户反馈,分析用户行为及需求,增加各平台粉丝数提高关注度和粉丝的活跃度,并及时与粉丝互动。4. 根据线上线下渠道的特点,用户反馈及转化规律,制定具有针对性的策略来提高用户订单成交量,用户活跃度。5. 负责原创文章的撰写,组织开选题会,确定选题内容和最终选题,紧跟热点策划相关的专题内容,策划相关的活动吸引粉丝,提高阅读。并负责各个节日海报的创意和文案策划。
20xx.01-20xx.12 广州XX网络有限公司 新媒体运营1、负责自媒体平台运营、用户管理、推广策划、活动策划执行、客服安排、素材文案分发;2、负责抖音、快手、微博、B站、百度、今日头条、官网等新媒体平台运营,内容策划执行,数据分析,用户提升,活动策划执行,广告投放等工作。20xx.07-20xx.12 广州XX管理有限公司 社群运营1、搭建和管理用户社群,完成社群拉新、留存、促活等基础运营指标;2、建立并完善社群运营策略,及流程规范,将公司现有资源、项目、渠道与社群结合、制定运营方案;3、深度挖掘用户需求、策划社群运营活动、策划热门话题引导、策划用户福利等,提升用户活跃度和粘性。
1、在本协议失效后,如果本协议中包括的某些保密信息并未失去保密性的,本协议仍对这些未失去保密性的信息发生效力,约束双方的行为。
毒品损害健康,残害生命,对个人、家庭、社会的危害是巨大的。青少年正处于生理发育和心理发展的重要时期,心理防线薄弱,好奇心强、判断是非能力差,容易成为毒品侵袭的人群。据调查,在我国的吸毒中,35岁以下的青少年占80%以上。而且,近年来中小学生群体吸毒现象有所增加。特别是随着“摇头丸”的出现,青少年吸毒人数有进一步上升的趋势,吸毒年龄也更加“年轻化”。如果把毒品比做猛兽,那么它最容易下口的对象就是青少年;如果把毒品比做瘟疫,最容易感染的也是青少年。青少年一旦“染毒”,其身心健康受到的损害,远大于成人。
教学质量是学校的生命线,咱们的老师们都有很强的质量意识,特别是这次教育局组织的六年统考、四年抽考。应该说六年和四年级的八位教师不计个人得失,每天起早贪晚的倾情付出让学校领导感动,让每一位教师佩服。更让人感动的是李丽杰、邹玉红老师忍受着嗓子痛不能说话和嗓子哑说不出话的痛苦依然坚持工作。本学期,我们还成功地举办了数学的“同课异构”和语文的“模课”活动。活动中涌现出了像赵淑萍、江式杰等优秀教师。
三年前,我们怀着对未来的美好憧憬,带着家人与老师的殷殷期盼,兴奋地跨进了心仪已久的美丽的邗中校园。春来春去,杨柳依依,书写无悔年华;燕离燕归,白云点点,唱响人生奋斗的凯歌。微冷的春风淡去了烟尘与伤痛,沉淀在内心的,是缤纷的梦想和那收获前的耕耘与奋斗。蓦然回首,三年寒窗苦读,一千多个日日夜夜,铸就了我们必胜的信念与坚不可摧的意志。我们的目光,从来没有像今天这般坚定执着;我们的思想,从来没有像现在这般成熟饱满;我们的心灵,从来没有眼前这般激荡燃烧。
主题 学习雷锋好榜样尊敬的老师、亲爱的同学们,大家好!963年3月5日,毛泽东同志发出了“向雷锋同志学习”的号召。40多年来,雷锋成为我们社会真情与爱心的化身,成为中国人民可贵的精神财富;雷锋精神刻在人们的灵魂深处,引领着一代又一代人健康成长。同学们,雷锋这个名字你一定不会陌生,但你可知道,什么是雷锋精神?第一,奉献社会。一个人做一件好事并不难,难的是一辈子做好事。雷锋坚持一辈子做好事,一辈子为人民服务,在他身上体现的是一种强烈的社会责任感。一次雷锋外出,在沈阳站换车的时候,发现一个背着小孩的中年妇女车票和钱丢了,就买了一张火车票塞到大嫂手里。大嫂含着眼泪问:“大兄弟,你叫什么名字,是哪个单位的?”雷锋说:“我叫解放军,就住在中国。”“雷锋出差一千里,好事做了一火车”。弘扬雷锋精神,就是要像雷锋那样,把社会责任感和使命感记在心间,随时随地为祖国和人民贡献自己的智慧和力量。第二,刻苦学习。雷锋不仅是奉献的楷模,还是学习成才的典范。他干一行爱一行,干一行专一行,挤出一切可以挤出的时间,努力学习为人民服务的本领。雷锋参军后不久,被分到运输连当汽车兵,他就把书本装在挎包里,只要车一停,他就坐在驾驶室里看书。他在日记中写道:“要学习,时间总是有的,问题是我们善不善于挤,愿不愿意钻。一块好好的木板,上面一个眼也没有,但钉子为什么能钻进去呢?我们在学习上也要提倡这种钉子精神,善于挤和钻。”
以布卢姆的《教育目标分类学》为依据,我确定了以下几个目标:目标一:理解故事内容,感知不同角度的不同现象。目标二:有表情地模仿任务对话,感受角色转变的乐趣。我将重难点定位为:理解故事内容,感知不同角度的不同现象。幼儿对于高矮并不陌生,要他们说出站在高处看到什么,他们能说出很多,反之,要他们说出站在矮处能看到什么,他们照样说的清楚。但是,他们无法将自己所看到的这些现象连接起来获得角度的概念。他们获得的只是高矮的分开的零碎的感知,从幼儿本身的发展来说,他们化零为整的能力并不强。同时,此故事的主要寓意便是告之我们横看成岭侧成峰的道理,因此,我将“理解故事内容,感知不同角度的不同现象”作为此次活动的重难点。在活动过程中,我通过故事的分段欣赏,对幼儿层层深入的提问,引导幼儿帮助高矮老鼠分别想办法体验对方的世界,同时让幼儿分别扮演高矮老鼠来解决重点,突破难点。为了顺利完成此次教学活动,我做了以下准备:1、与故事有关的几副图案2、高老鼠和矮老鼠的图饰二:说教法纲要中指出:教师应成为幼儿学习活动的支持者、合作者和引导者,在活动过程中应力求形成合作探究式的师幼互动。因此,我采用了游戏法、分段讲述法、提问法等几种教学方法。1、游戏法:纲要指出:应寓教育于生活、游戏之中,使幼儿能在学中玩、玩中学、玩中求发展。在活动的第一环节,我采取了让幼儿游戏的方法,使之初步感受高矮。2、分段讲述法:讲述法是语言活动的基本方法之一,在活动过程中,讲述时我注意到声音的抑扬顿挫,语调的高低,语气的变化来引起幼儿的兴趣。同时采用分段讲述是帮助幼儿更好地理解故事内容,层层深入的思考获得高矮的概念。3、提问法:提问法是指教师利用各种手段激发幼儿积极思维的方法。在活动过程中我通过提问描述性的问题“高老鼠看到了什么”“矮老鼠看到什么”,思考性问题“还会看到什么”等来帮助幼儿加深对故事的理解,同时我注意到请不同层次的幼儿进行作答,充分体现了纲要中的“满足群体需要和尊重个体差异,使每个幼儿都能获得成功的满足感”。
练习:现在你能解答课本85页的习题3.1第6题吗?有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人,如果送还了一条船 ,正好每条船坐9人,问这个班共多少同学?小结提问:1、今天你又学会了解方程的哪些方法?有哪些步聚?每一步的依据是什么?2、现在你能回答前面提到的古老的代数书中的“对消”与“还原”是什么意思吗?3、今天讨论的问题中的相等关系又有何共同特点?学生思考后回答、整理:① 解方程的步骤及依据分别是:移项(等式的性质1)合并(分配律)系数化为1(等式的性质2)表示同一量的两个不同式子相等作业:1、 必做题:课本习题2、 选做题:将一块长、宽、高分别为4厘米、2厘米、3厘米的长方体橡皮泥捏成一个底面半径为2厘米的圆柱,它的高是多少?(精确到0.1厘米)
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
(1)本周哪一天河流水位最高,哪一天河流水位最低,它们位于警戒水位之上还是之下,与警戒水位的距离分别是多少?(2)与上周末相比,本周末河流的水位是上升还是下降了?解析:(1)先规定其中一个为正,则另一个就用负表示.理解表中的正负号表示的含义,根据条件计算出每天的水位即可求解;(2)只要观察星期日的水位是正负即可.解:(1)前两天的水位是上升的,第1天的水位是+0.20米;第2天的水位是+0.20+0.81=+1.01米;第3天的水位是+1.01-0.35=+0.66米;第4天的水位是+0.66+0.13=+0.79米;第5天的水位是0.79+0.28=+1.07米;第6天的水位是1.07-0.36=+0.71米;第7天的水位是0.71-0.01=+0.7米;则水位最低的是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米,则本周末河流的水位上升了0.7米.方法总结:解此题的关键是分析题意列出算式,用的数学思想是转化思想,即把实际问题转化成数学问题.探究点二:有理数的加减混合运算在生活中的其他应用
因为x3表示手机部数,只能为正整数,所以这种情况不合题意,应舍去.综上所述,商场共有两种进货方案.方案1:购甲型号手机30部,乙型号手机10部;方案2:购甲型号手机20部,丙型号手机20部.(2)方案1获利:120×30+80×10=4400(元);方案2获利:120×20+120×20=4800(元).所以,第二种进货方案获利最多.方法总结:仔细读题,找出相等关系.当用含未知数的式子表示相等关系的两边时,要注意不同型号的手机数量和单价要对应.三、板书设计增收节支问题分析解决列二元一次方程,组解决实际问题)增长率问题利润问题利用图表分析等量关系方案选择通过问题的解决使学生进一步认识数学与现实世界的密切联系,乐于接触生活环境中的数学信息,愿意参与数学话题的研讨,从中懂得数学的价值,逐步形成运用数学的意识;并且通过对问题的解决,培养学生合理优化的经济意识,增强他们的节约和有效合理利用资源的意识.
A、B两码头相距140km,一艘轮船在其间航行,顺水航行用了7h,逆水航行用了10h,求这艘轮船在静水中的速度和水流速度.解析:设这艘轮船在静水中的速度为xkm/h,水流速度为ykm/h,列表如下,路程 速度 时间顺流 140km (x+y)km/h 7h逆流 140km (x-y)km/h 10h解:设这艘轮船在静水中的速度为xkm/h,水流速度为ykm/h.由题意,得7(x+y)=140,10(x-y)=140.解得x=17,y=3.答:这艘轮船在静水中的速度为17km/h,水流速度为3km/h.方法总结:本题关键是找到各速度之间的关系,顺速=静速+水速,逆速=静速-水速;再结合公式“路程=速度×时间”列方程组.三、板书设计“里程碑上的数”问题数字问题行程问题数学思想方法是数学学习的灵魂.教学中注意关注蕴含其中的数学思想方法(如化归方法),介绍化归思想及其运用,既可提高学生的学习兴趣,开阔视野,同时也提高学生对数学思想的认识,提升解题能力.
答:书包单价92元,随身听单价360元。最优化决策:聪明的Mike想了想回答正确后便同爸爸去买礼物,恰好赶上商家促销,人民商场所有商品打八折销售,家乐福全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家购买看中的这两样物品,你能帮助他选择在哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?提示:书包单价92元,随身听单价360元。2)在人民商场购买随声听与书包各一样需花费现金452× =361.6(元)∵ 361.6<400 ∴可以选择在人民商场购买。在家乐福可先花现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,共花现金360+2=362(元)。因为362<400,所以也可以选择在家乐福购买。因为362>361.6,所以在人民商场购买更省钱。第五环节:学习反思;(5分钟,学生思考回答,不足的地方教师补充和强调。)
探究点二:用配方法解二次项系数为1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左边不是一个完全平方式,需将左边配方.解:移项,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.开平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法总结:用配方法解一元二次方程时,应按照步骤严格进行,以免出错.配方添加时,记住方程左右两边同时加上一次项系数一半的平方.三、板书设计用配方法解简单的一元二次方程:1.直接开平方法:形如(x+m)2=n(n≥0)用直接开平方法解.2.用配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n(n≥0)的形式,再用直接开平方法,便可求出它的根.3.用配方法解二次项系数为1的一元二次方程的一般步骤:(1)移项,把方程的常数项移到方程的右边,使方程的左边只含二次项和一次项;(2)配方,方程两边都加上一次项系数一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;(3)用直接开平方法求出它的解.
探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.
解析:(1)已知抛物线解析式y=ax2+bx+0.9,选定抛物线上两点E(1,1.4),B(6,0.9),把坐标代入解析式即可得出a、b的值,继而得出抛物线解析式;(2)求出y=1.575时,对应的x的两个值,从而可确定t的取值范围.解:(1)由题意得点E的坐标为(1,1.4),点B的坐标为(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的抛物线的解析式为y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,当y=1.575时,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,则t的取值范围为32<t<92.方法总结:解答本题的关键是注意审题,将实际问题转化为求函数问题,培养自己利用数学知识解答实际问题的能力.三、板书设计二次函数y=ax2+bx+c的图象与性质1.二次函数y=ax2+bx+c的图象与性质2.二次函数y=ax2+bx+c的应用
一、教学目标1.初步掌握“两边成比例且夹角相等的两个三角形相似”的判定方法.2.经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的过程;通过画图、度量等操作,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,体验数学活动充满着探索性和创造性.3.能够运用三角形相似的条件解决简单的问题. 二、重点、难点1. 重点:掌握判定方法,会运用判定方法判定两个三角形相似.2. 难点:(1)三角形相似的条件归纳、证明;(2)会准确的运用两个三角形相似的条件来判定三角形是否相似.3. 难点的突破方法判定方法2一定要注意区别“夹角相等” 的条件,如果对应相等的角不是两条边的夹角,这两个三角形不一定相似,课堂练习2就是通过让学生联想、类比全等三角形中SSA条件下三角形的不确定性,来达到加深理解判定方法2的条件的目的的.
(3)设点A的坐标为(m,0),则点B的坐标为(12-m,0),点C的坐标为(12-m,-16m2+2m),点D的坐标为(m,-16m2+2m).∴“支撑架”总长AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函数的图象开口向下,∴当m=3米时,“支撑架”的总长有最大值为15米.方法总结:解决本题的关键是根据图形特点选取一个合适的参数表示它们,得出关系式后运用函数性质来解.三、板书设计二次函数y=a(x-h)2+k的图象与性质1.二次函数y=a(x-h)2+k的图象与性质2.二次函数y=a(x-h)2+k的图象与y=ax2的图象的关系3.二次函数y=a(x-h)2+k的应用要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和提高学生学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台.充分利用合作交流的形式,能使教师发现学生分析问题、解决问题的独到见解以及思维的误区,以便指导今后的教学.
解析:先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),∴当x>1时,2x>kx+b.∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C.方法总结:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在y轴上(或下)方部分所有的点的横坐标所构成的集合.三、板书设计1.通过函数图象确定一元一次不等式的解集2.一元一次不等式与一次函数的关系本课时主要是掌握运用一次函数的图象解一元一次不等式,在教学过程中采用讲练结合的方法,让学生充分参与到教学活动中,主动、自主的学习.