注意强调概念理解不到位的方面:① tanA是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”,若用三个字母表示角则“∠”不能省略,如“∠ABC的正切表示为tan∠ABC”;② tanA没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比;③ tanA不表示“tan”乘以“A”。通过给出直角三角形的任两边的长,让学生求∠A,∠B的正切及时强化学生对概念的3、正切函数的应用理解通过实际问题的解答进一步了解梯子的倾斜程度、坡度与正切函数的关系;对学生进行正切的变式训练,让学生理解不管角的位置如何改变,只要角的大小不变则其正切值是不变的。练习的安插注意梯度,让不同的学生有不同的发展。4、最后小结本节课的知识要点及注意点五、达标测试具体思路:把几个问题分为四个等级,方便对学生的了解;通过评价让学生对自己的学习也做到心中有数。
5、课本练习:P129引导学生运用随机数表来模拟试验过程并给予解答。问题2:有四个阄,其中两个分别代表两件奖品,四个人按顺序依次抓阄来决定这两件奖品的归属,先抓的人中奖率一定大吗?教法:可组织学生用试验的方法来说明问题,对于试验的结果是有说服力的,很容易使学生相信摸奖的次序对中奖的概率没有影响。问题3:彩民甲研究了近几期这种体育彩票的中奖号码,发现数字06和08出现的次数最多,他认为,06和08是“幸运号码”,因此,他在所买的每一注彩票中都选上了06和08。你认为他这样做有道理吗?教法说明:要让学生看到试验方法对试验结果的影响:1、 因为开奖用的36个球是均匀的、无差别的,所以每个号码被选为中奖号码的可能性是一样的,不存在“幸运号码”。
【类型四】 含整数指数幂、零指数幂与绝对值的混合运算计算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分别根据有理数的乘方、零指数幂、负整数指数幂及绝对值的性质计算出各数,再根据实数的运算法则进行计算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法总结:熟练掌握有理数的乘方、零指数幂、负整数指数幂及绝对值的性质是解答此题的关键.三、板书设计1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减.2.零次幂:任何一个不等于零的数的零次幂都等于1.即a0=1(a≠0).3.负整数次幂:任何一个不等于零的数的-p(p是正整数)次幂,等于这个数p次幂的倒数.即a-p=1ap(a≠0,p是正整数).从计算具体问题中的同底数幂的除法,逐步归纳出同底数幂除法的一般性质.教学时要多举几个例子,让学生从中总结出规律,体验自主探究的乐趣和数学学习的魅力,为以后的学习奠定基础
方法总结:本题结合三角形内角和定理考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况.如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.三、板书设计1.等腰三角形的判定定理:有两个角相等的三角形是等腰三角形(等角对等边).2.反证法(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.解决几何证明题时,应结合图形,联想我们已学过的定义、公理、定理等知识,寻找结论成立所需要的条件.要特别注意的是,不要遗漏题目中的已知条件.解题时学会分析,可以采用执果索因(从结论出发,探寻结论成立所需的条件)的方法.
探究点二:列分式方程某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方程为()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:设原计划每天生产x个,则实际每天生产(x+4)个,根据题意可得等量关系:(原计划20天生产的零件个数+10个)÷实际每天生产的零件个数=15天,根据等量关系列出方程即可.设原计划每天生产x个,则实际每天生产(x+4)个,根据题意得20x+10x+4=15.故选A.方法总结:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.三、板书设计1.分式方程的概念2.列分式方程本课时的教学以学生自主探究为主,通过参与学习的过程,让学生感受知识的形成与应用的价值,增强学习的自觉性,体验类比学习思想的重要性,然后结合生活实际,发现数学知识在生活中的广泛应用,感受数学之美.
分式1x2-3x与2x2-9的最简公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最简公分母为x(x+3)(x-3).方法总结:最简公分母的确定:最简公分母的系数,取各个分母的系数的最小公倍数;字母及式子取各分母中所有字母和式子的最高次幂.“所有字母和式子的最高次幂”是指“凡出现的字母(或含字母的式子)为底数的幂的因式选取指数最大的”;当分母是多项式时,一般应先因式分解.【类型二】 分母是单项式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先确定最简公分母,找到各个分母应当乘的单项式,分子也相应地乘以这个单项式.解:(1)最简公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最简公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最简公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.
第一,知行合一,切实提高绿色低碳转型的思想自觉和行动自觉。要有全面、系统、深刻认识“30·60”内涵的思想自觉。与发达国家相比,我国仍处于快速工业化、城镇化进程,经济将在较长一段时期保持中高速增长,人均能源需求尚有较大上升空间,未来碳减排压力较大。据国际组织、科研机构测算,我国碳排放峰值将超过XXX亿吨,而XX碳排放峰值为XX亿吨,XX约为XX亿吨。我国从碳达峰到碳中和仅有XX年时间,远低于欧XX家XX-XX年的时间。“碳达峰、碳中和”不是要简单以牺牲经济增长速度、国民财富积累和人民生活水平提高为代价,而是要实现碳减排约束下全面、协调、可持续的高质量发展,需要充分、理性、智慧地平衡好生态文明建设与经济社会发展的关系。未来几十年,绿色低碳转型将嵌入所有经济活动的内核,成为投资、生产、消费和流通等决策的核心逻辑。
【活动目标】1、认识长方体和圆柱体,简单了解它们和长方形、圆形之间的关系。2、搜集生活中的多种长方体和圆柱体的物品,并进行组合造型。3、发展形象思维能力和剪、粘贴的技能。【活动重点、难点】 1、重点认识长方体和正方体。2、难点简单了解它们和长方形、圆形的关系及它们的特征。 【活动准备】1、搜集长方体和正方体的玩具及物品。2、同等大的长方形、圆形雪花片积木。2、剪刀、胶水、彩纸、调查表。 【活动流程】 ㈠幼儿在玩中探索发现玩具的特征,并进行分类。 师:“小朋友老师带来了许多好玩的玩具,我们一起来玩一玩。” 幼儿任意挑玩具,自由玩。师:“刚才你们发现了什么?他们能滚动吗?(幼儿自由回答) 师:“请小朋友把能滚动的玩具放好红色的篮子里,把不能滚动的玩具放到绿色的篮子里。 ㈡让幼儿对正方体和圆柱体进行测量,在测量中验证它们的特征。1、小朋友放的真好,我们一起来看一看能滚动的物体是什么样子的?(幼儿自由回答)我们来看一看不能滚动的玩具是什么样子的?(幼儿回答) 师:小朋友观察的真详细,那这个圆圆的玩具,它两边的圆一样大吗?这个长方形的玩具每个面一样大吗?幼:一样大,不一样大。(幼儿争执不下)2、老师出示纸条,幼儿亲自动手测量,不断验证自己的想法,最好得出结论。3、教师小结:这种身体像柱子一样,而且上下中间一样粗,两头都是一样大的圆形的物体,我们称它为圆柱体,圆柱体放倒了只能朝一个方向滚动。这种身体像盒子一样,有六个面,十二条边,一种每个面都是长方形,一种四个面是长方形的,另外两个面是正方形的物体,我们称它为长方体。
教学目标1. 正确、流利有感情地朗读课文2. 读懂课文内容,了解故事所蕴含的道理3. 培养独立阅读能力教学重点理解鹿对自己的角和腿的前后不同态度教学难点体会故事所讲述的道理课时安排1课时教学过程一、复习回顾,揭示课题1. 师:同学们,上节课我们学习了《陶罐和铁罐》,懂得了每个人都有长处和短处,要善于看到别人的长处,正视自己的短处,相互尊重,和睦相处。今天我们学习一篇新课文《狮子和鹿》,看看这个故事又会给我们什么启发。教师板书课题:狮子和鹿,请学生读题。2. 出示狮子和鹿的图片,师:看到这两种动物,联想到了什么呢?学生回答。师:狮子凶猛,鹿很美丽,这个大家都已知道。不过,这篇课文通过狮子和鹿的故事却要告诉我们一个新的道理,是什么呢?下面就看谁的读书本领强,能够自己读懂课文,领悟这个道理了。
一、对教材内容的处理根据新课程标准的要求、知识的跨度、学生的认知水平,我对教材内容有增有减。二、教学策略的选用(一)运用了模拟活动,强化学生的生活体验,本框题知识所对应的经济现象,学生已具有了一定的生活体验,但是缺乏对这种体验的深入思考。因此在进一步强化这种体验的过程中进行了思考和认知,使知识从学生的生活体验中来,从学生的思考探究中来,有助于提高学生的兴趣,有助于充分调动学生现有的知识,培养学生的各种能力,也有助于实现理论知识与实际生活的交融。(二)组织学生探究知识并形成新的知识我从学生的生活体验入手,运用案例等形式创设情境呈现问题,使学生在自主探索、合作交流的过程中,发现问题、分析问题、解决问题,在问题的分析与解决中主动构建知识。也正是由于这些认识来自于学生自身的体验,因此学生不仅“懂”了,而且“信”了。从内心上认同这些观点,进而能够主动地内化为自己的情感、态度、价值观,并融入到实践活动中去,有助于实现知、行、信的统一。
(3)人民币外汇牌价:我国通常采用100单位外币作为标准,折算为一定数量的人民币。如果用100单位外币可以兑换更多的人民币,说明外汇汇率升高;反之,则说明外汇汇率跌落。教师活动:大家知道汇率是经常变动的,为什么汇率经常变动?我国在美国、日本等国再三施加压力的情况下,为什么保持汇率稳定,人民币不升值?学生活动:学生就老师提出的问题去阅读教材;然后展开讨论,并回答(4)保持人民币币值稳定的意义教师点评:影响汇率变动的因素主要有:外汇的供求关系、通货膨胀(或紧缩)率的差异、经济增长率、利率水平、国家货币当局的干预与管制、市场预期、外汇投机活动等。外汇在国家经济发展和国际贸易中具有重要的作用:通过汇率的升降调节进出口贸易;可以影响国际资本的流动方向和数量;可以影响国内物价水平;影响外汇储备的实际价值等。
2、幼儿的动手、分辨能力,发展幼儿思维的灵活性。活动准备:几何图形挂件一人一个,数字卡片,演示教具,魔术卡每人一张活动过程:一、带幼儿进知识宫,激发幼儿的兴趣。师:今天老师要带小朋友到知识宫去玩。在知识宫,老师要给小朋友好多礼物,但这些礼物一定要小朋友动脑筋才能够得到。第一份礼物需根据自己挂着的图形和图形上的数字找座位,找到了,这个图形就作为第一份礼物送给你们。
活动目标: 1、理解故事内容,产生有意识的变换角度去观察事物的兴趣。 2、积极参与表演游戏,从中去体验、探索和发现。 3、发挥想象力,大胆地在集体面前表述。 活动准备: 1、故事操作图片若干。 2、幼儿身着红色或蓝色的衣服。 3、高老鼠、矮老鼠图片各一张。 4、录音机,游戏音乐一段。 活动过程: 一、导入。 组织幼儿学习‘高人走’(踮起脚尖,双手举高)、‘矮人走’(蹲下来,双手放背后)。 二、欣赏故事。 1、那么,今天,我们教室里来了两只老鼠,它们也是一个高,一个矮。小朋友先听听它们的自我介绍。(出示高老鼠),你们好!我今天穿了一件红衣服,我的名字叫高老鼠。(出示矮老鼠),你们好!我今天穿的是蓝衣服,我就是矮老鼠。
1. 监管力度不一,学习效率参差。 线上学习,有部分家长很重视,为孩子提供了安静的学习环境,部分学生也很自律,能按时听课、积极思考、完成各项课内课外练习。但不排除存在家长无条件提供好的学习环境,学生缺乏自控能力的现象。我校生源一大部分是新居民子女,线上教学的中后期,学生家长绝大部分外出务工,学生的学习几乎处于“放任自流”的状态。孩子缺少大人的监督,不自觉更体现无疑,上课不专心,不记笔记,甚至不上课的也都存在,更别说语文的口头朗读、背诵作业和笔头的听写作业等的落实了。学生上课的参与率不保障,学校效率也参差不齐,两级分化明显。
活动准备: 幼儿人手一份操作纸,图片若干 活动过程: 一、小老鼠买面包圈。 1、师:小老鼠去给大老虎买面包圈当点心,我们看看它买了几个面包圈。出示三幅图,引导幼儿逐一观察并说说每幅图的意思:第一幅图——小老鼠买了1个面包圈;第2幅图——小老鼠又买了4个面包圈;第3幅图——小老鼠一共买了5个面包圈。引导幼儿了解“一共”表示把两次买的面包圈合起来的意思。 2、教师:你能用一道算式表示小老鼠买面包圈这件事吗?鼓励幼儿尝试列加法算式。 3、引导幼儿看算式说说数字与符号的意思,判断算式是否正确。 二、大老虎吃点心。 1、教师:大老虎可喜欢这个点心啦,瞧它吃得多开心。出示三幅图,引导幼儿观察并讲述每幅图的意思:第一幅图——大老虎有5个面包圈;第二幅图——大老虎吃了1个面包圈;第三幅图——大老虎还剩下4个面包圈。引导幼儿了解“还剩下”表示吃掉面包圈后少了的意思。 2、教师:你能用一道算式表示大老虎吃面包圈这件事吗?鼓励幼儿尝试列减法算式。 3、引导幼儿看算式说说数字和符号的意思。
2.积极参与讨论活动,大胆讲述自己的意见。活动准备:6的分合卡片,分类图一张。记录单、记号笔幼儿人手一份。 活动过程:1、复习5以内数的组成(1)游戏:碰球游戏前,由教师确定碰几球,如碰5球。教师问:“嗨,嗨,我的1球碰几球?”幼儿答:“嗨,嗨,我的1球碰4球?”速度可随着幼儿的熟练程度逐渐加快。游戏先集体后个人。
(2)依托各方力量,办好家长学校 学校要重视家长学校这块教育主阵地的建设。首先成立家长学校领导机构——家长委员会,做到定期召开家长委员会会议,通报学校工作计划及取得的成绩、听取家长委员会成员的合理化建议等。依托家长委员会,组织专题研讨,为家校沟通、亲子沟通提供平台。同时从家庭教育的视角,与家长们一起思考如何提高教育的有效性。 为加强教育的效果,一方面学校要求教师访问学生家庭,作好了解、协调工作,防微杜渐。另一方面,还要通过家长学校这种组织机构治标治本,对学生家长有针对、有系统、分层次地进行家庭教育的辅导,通过家长会、辅导讲座、交流会、家长信、校刊小报等多种途径和手段,帮助家长树立正确、新型的家庭教育观念,传授家长科学、合理的育人常识和技巧,提高家庭教育水平。
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.5.1节《函数零点与方程的解》,由于学生已经学过一元二次方程与二次函数的关系,本节课的内容就是在此基础上的推广。从而建立一般的函数的零点概念,进一步理解零点判定定理及其应用。培养和发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。1、了解函数(结合二次函数)零点的概念;2、理 解函数零点与方程的根以及函数图象与x轴交点的关系,掌握零点存在性定理的运用;3、在认识函数零点的过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学数形结合及函数思想; a.数学抽象:函数零点的概念;b.逻辑推理:零点判定定理;c.数学运算:运用零点判定定理确定零点范围;d.直观想象:运用图形判定零点;e.数学建模:运用函数的观点方程的根;
本章通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。1.了解函数的零点、方程的根与图象交点三者之间的联系.2.会借助零点存在性定理判断函数的零点所在的大致区间.3.能借助函数单调性及图象判断零点个数.数学学科素养1.数学抽象:函数零点的概念;2.逻辑推理:借助图像判断零点个数;3.数学运算:求函数零点或零点所在区间;4.数学建模:通过由抽象到具体,由具体到一般的思想总结函数零点概念.重点:零点的概念,及零点与方程根的联系;难点:零点的概念的形成.
大全集团作为工程电气、新能源、交通技术三大产业领域的领先制造商,拥有百亿资产的多元化、国际化、品牌化企业集团,近年来致力于发展光伏产业,自20**年投资建设多晶硅项目以来,就已把万州作为发展光伏产业的战略基地。目前多晶硅项目达到年产4000吨的规模,技术层次、产品质量、运营效益、环保水平国内领先、国际一流。今年5月,重庆大全太阳能有限公司注册成立,计划投资30亿元,建设1000兆瓦硅片项目,一期250兆瓦年内建成投产。整个项目达产后,不仅年销售收入将达到100亿元,可提供4000个就业岗位,更重要的是,将使大全在光伏领域的竞争力得到极大提高,一举占据新能源产业的制高点!