二、课前准备:1、在教师的指导下,让同学们按自己的兴趣,分成六个小组,参考教材提示的相关内容的学习方法搜集资料。分组情况:陆上交通小组(一至四组):分别查找有关路、桥、陆上交通工具(自行车组、机动车组)发展变化的资料。水上交通小组:查找有关船的发展变化的资料。空中交通小组:查找有关热气球、飞艇、飞机等飞行器发展变化的资料。 2、教师准备相应课件与资料。
解析:先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),∴当x>1时,2x>kx+b.∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C.方法总结:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在y轴上(或下)方部分所有的点的横坐标所构成的集合.三、板书设计1.通过函数图象确定一元一次不等式的解集2.一元一次不等式与一次函数的关系本课时主要是掌握运用一次函数的图象解一元一次不等式,在教学过程中采用讲练结合的方法,让学生充分参与到教学活动中,主动、自主的学习.
解析:(1)根据题设条件,求出等量关系,列一元一次方程即可求解;(2)根据题设中的不等关系列出相应的不等式,通过求解不等式确定最值,求最值时要注意自变量的取值范围.解:设购进A种树苗x棵,则购进B种树苗(17-x)棵,(1)根据题意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:购进A种树苗10棵,B种树苗7棵;(2)由题意得17-x172,所需费用为80x+60(17-x)=20x+1020(元),费用最省需x取最小整数9,此时17-x=17-9=8,此时所需费用为20×9+1020=1200(元).答:购买9棵A种树苗,8棵B种树苗的费用最省,此方案所需费用1200元.三、板书设计一元一次不等式与一次函数关系的实际应用分类讨论思想、数形结合思想本课时结合生活中的实例组织学生进行探索,在探索的过程中渗透分类讨论的思想方法,培养学生分析、解决问题的能力,从新课到练习都充分调动了学生的思考能力,为后面的学习打下基础.
知识与技能目标:1. 能正确说出三元一次方程(组)及其解的概念,能正确判别一组数是否是三元一次方程(组)的解;2. 会根据实际问题列出简单的三元一次方程或三元一次方程组。过程与方法目标:1. 通过加深对概念的理解,提高对“元”和“次”的认识。2. 能够逐步培养类比分析和归纳概括的能力,了解辩证统一的思想。情感态度与价值观目标:通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。
故直线l2对应的函数关系式为y=52x.故(-2,-5)可看成是二元一次方程组5x-2y=0,2x-y=1的解.(3)在平面直角坐标系内画出直线l1,l2的图象如图,可知点A(0,-1),故S△APO=12×1×2=1.方法总结:此题在待定系数法的应用上有所创新,并且把一次函数的图象和三角形面积巧妙地结合起来,既考查了基本知识,又不局限于基本知识.三、板书设计利用二元一次方程组确定一次函数表达式的一般步骤:1.用含字母的系数设出一次函数的表达式:y=kx+b(k≠0);2.将已知条件代入上述表达式中得k,b的二元一次方程组;3.解这个二元一次方程组得k,b的值,进而得到一次函数的表达式.通过教学,进一步理解方程与函数的联系,体会知识之间的普遍联系和知识之间的相互转化.通过对本节课的探究,培养学生的观察能力、识图能力以及语言表达能力.
1、给小狗打电话 欣赏flash动画(多媒体出现手机图案和动物电话本,拨打电话。) “你们想给谁打电话?”(给小狗打电话。) “小狗家的电话号码是多少?”(小朋友看媒体读电话号码,电话连接中,铃声响起,播放歌曲。) “咦?小狗的电话铃声和我们的电话铃声有什么不同?”(音乐铃声,会唱歌的铃声……) 2、给小兔打电话 “你们听到小兔的电话在唱什么?”(教师根据幼儿的回答用相应的歌曲重复) 师扮演小兔接电话:“你好呀,我是小兔,找我干吗呀?”(小兔我想请你去公园玩……) (鼓励幼儿大胆说出自己打电话的想法) 3、给小鸭打电话 “刚才你们打给了自己的好朋友,我也想打给我的动物朋友,猜猜我的电话打给谁?”(把谜语作为歌词演唱歌曲) “我有圆脑袋,穿着黄黄衣,走路摇摇摆,猜猜我是谁?” “唱歌呷呷呷,爱吃鱼和虾,我是小鸭子,你们猜对了!” (师生共同拨打电话。教师范唱歌曲《谁找我》) “小鸭子在忙什么?怎么还不接电话呢?”(在河里游泳。)(幼儿再唱歌曲) 4、给大象打电话 说说大象的电话铃声和小兔的铃声有什么不同?(辨别声音粗细快慢的不同)学唱大象的歌曲铃声。
一、活动综述1、活动目标2、激发幼儿探究黄豆与豆制品关系的欲望和兴趣。3、引导幼儿初步认识黄豆及其制品,并了解其营养价值。4、引导幼儿运用多种感官辨别黄豆,区分豆制品。 之所以确定这样的活动目标,首先是以《幼儿园指导纲要》中健康领域和科学领域的目标为依据,以中班幼儿年龄特征为出发点来设计,是基于豆制品对人体的营养价值而定的。在目标里,我把培养孩子情感、态度放在第一位,也就是说:在教学中,力求通过为幼儿创设一个宽松、和谐的环境。在充分调动幼儿的学习积极性和主动性以及探索求知欲望的基础上,引导幼儿学习知识和技能。二、重点、难点 根据我对教材的理解,我认为教材重点是:帮助幼儿了解黄豆及其制品具有丰富营养,有益人体健康。 教材难点:引导幼儿运用多种感官、方式辨别黄豆、区分豆制品。
2、对生活中各种各样的电话铃声产生好奇。活动准备:1、有主题“好听的铃声”经验背景。2、幼儿和家长一起制作的各种有趣的手机。3、多媒体课件:打电话flash动画。活动过程:一、演唱歌曲“打电话”——多媒体播放美丽的森林背景图片“森林真美呀!小朋友,我们一起来玩打电话的游戏好吗?” (播放音乐,歌表演打电话。用问答的形式赋予游戏情景“喂,喂,喂,请问你找谁?”“我要找xxx”“找我干吗呀?”“和我一起做游戏……”)二、在给小动物打电话情景中感受、学唱歌曲“谁找我呀”1、给小狗打电话 欣赏flash动画(多媒体出现手机图案和动物电话本,拨打电话。)“你们想给谁打电话?”(给小狗打电话。)“小狗家的电话号码是多少?”(小朋友看媒体读电话号码,电话连接中,铃声响起,播放歌曲。)“咦?小狗的电话铃声和我们的电话铃声有什么不同?”(音乐铃声,会唱歌的铃声……)2、给小兔打电话“你们听到小兔的电话在唱什么?”(教师根据幼儿的回答用相应的歌曲重复) 师扮演小兔接电话:“你好呀,我是小兔,找我干吗呀?”(小兔我想请你去公园玩……) (鼓励幼儿大胆说出自己打电话的想法)3、给小鸭打电话“刚才你们打给了自己的好朋友,我也想打给我的动物朋友,猜猜我的电话打给谁?”(把谜语作为歌词演唱歌曲)“我有圆脑袋,穿着黄黄衣,走路摇摇摆,猜猜我是谁?”“唱歌呷呷呷,爱吃鱼和虾,我是小鸭子,你们猜对了!” (师生共同拨打电话。教师范唱歌曲《谁找我》)“小鸭子在忙什么?怎么还不接电话呢?”(在河里游泳。)(幼儿再唱歌曲)4、给大象打电话 说说大象的电话铃声和小兔的铃声有什么不同?(辨别声音粗细快慢的不同)学唱大象的歌曲铃声。三、变出歌曲铃声“小动物们的电话铃声会唱歌,真好听,我们也来给自己的电话设计一个音乐铃声?”(师演唱一首幼儿学过的歌曲,作为自己的手机铃声,启发幼儿运用学过的歌曲为自己的手机设计铃声。)1、戴上自己制作的手机。2、“让我们的电话也会唱歌。”说说、唱唱幼儿自己设计的歌曲铃声。(复习熟悉的歌曲)
注重幼儿的兴趣和终身教育是我活动的两大特色。幼儿园是现代幼儿生活学习最为熟悉的环境之一,活动开始我就从让幼儿在活动中体验情感态度着手,注重幼儿参与活动的过程。在整个活动中我都是强调以幼儿自主参与活动为中心培养幼儿的兴趣。有了这种兴趣才能让幼儿对下面乃至今后的艺术活动保持积极的心态,这种心态对幼儿以后的工作学习都是会有影响的是至关重要的。因为在活动中要求幼儿手脑眼并用的活动起来,《纲要》对幼儿艺术教育的目标是:能初步感受并喜爱环境、生活和艺术中的美,能用自己喜欢的方式进行艺术表现活动。以往我们的美术活动基本是以幼儿单独进行创作的形式来进行,忽略了美术活动中幼儿的交往和合作。而合作画的关键是要作画的人之间默契的配合。这中配合说简单也不简单,对幼儿有一定的挑战性,说难也不难只要幼儿明白了其中的道理就不难完成。在教师适时的引导和集体作画的氛围中不知不觉中就让幼儿手脑眼结合协调并用的,它的巧妙之处就在于其潜移默化性,是比较适合幼儿。这样既能面向全体又能保护好他们对艺术表现的积极性让每个幼儿都得到美的熏陶和培养。活动中教师以引导者的身份出现,对幼儿表达出现困难的地方加以点拨。使每个孩子都能充分自主的参与到活动中。
二、幼儿园防洪防汛工作预案: 1、加强对全园师生防汛知识的宣传教育,通过橱窗、传单等多种形式,把防汛知识传达给每位师生,提高全园师生的防范灾害能力。 2、加强检查和防范工作,经常保持校园交通、排水设施畅通,对校园内容易受淹的地方逐点检查,确保地下水道疏通。对幼儿园园舍墙体、屋面、门窗、电器等定期安全检查,对检查中发现的问题和隐患及时整改。坚决封闭幼儿园危房,防止安全事故发生。
2. 在弹性限度内,弹簧的长度y(厘米)是所挂物体质量x(千克)的一次函数.当所挂物体的质量为1千克时弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y与x之间的函数关系式,并求当所挂物体的质量为4千克时弹簧的长度.答案: 当x=4是,y= 3. 教材例2的再探索:我边防局接到情报,近海处有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶,如图所示, , 分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.当时间t等于多少分钟时,我边防快艇B能够追赶上A。答案:直线 的解析式: ,直线 的解析式: 15分钟第五环节课堂小结(2分钟,教师引导学生总结)内容:一、函数与方程之间的关系.二、在解决实际问题时从不同角度思考问题,就会得到不一样的方法,从而拓展自己的思维.三、掌握利用二元一次方程组求一次函数表达式的一般步骤:1.用含字母的系数设出一次函数的表达式: ;2.将已知条件代入上述表达式中得k,b的二元一次方程组;3.解这个二元一次方程组得k,b,进而得到一次函数的表达式.
由②得y=23x+23.在同一直角坐标系中分别作出一次函数y=3x-4和y=23x+23的图象.如右图,由图可知,它们的图象的交点坐标为(2,2).所以方程组3x-y=4,2x-3y=-2的解是x=2,y=2.方法总结:用画图象的方法可以直观地获得问题的结果,但不是很准确.三、板书设计1.二元一次方程组的解是对应的两条直线的交点坐标;2.用图象法解二元一次方程组的步骤:(1)变形:把两个方程化为一次函数的形式;(2)作图:在同一坐标系中作出两个函数的图象;(3)观察图象,找出交点的坐标;(4)写出方程组的解.通过引导学生自主学习探索,进一步揭示了二元一次方程和函数图象之间的对应关系,很自然的得到二元一次方程组的解与两条直线的交点之间的对应关系.进一步培养了学生数形结合的意识,充分提高学生数形结合的能力,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法.
方法总结:已知解集求字母系数的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解题过程体现了方程思想.三、板书设计1.一元一次不等式的概念2.解一元一次不等式的基本步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)两边都除以未知数的系数.本节课通过类比一元一次方程的解法得到一元一次不等式的解法,让学生感受到解一元一次不等式与解一元一次方程只是在两边都除以未知数的系数这一步时有所不同.如果这个系数是正数,不等号的方向不变;如果这个系数是负数,不等号的方向改变.这也是这节课学生容易出错的地方.教学时要大胆放手,不要怕学生出错,通过学生犯的错误引起学生注意,理解产生错误的原因,以便在以后的学习中避免出错.
把解集在数轴上表示出来,并将解集中的整数解写出来.解析:分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集,再找出解集范围内的整数即可.解:x+23<1 ①,2(1-x)≤5 ②,由①得x<1,由②得x≥-32,∴不等式组的解集为-32≤x<1.则不等式组的整数解为-1,0.方法总结:此题主要考查了一元一次不等式组的解法,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.三、板书设计一元一次不等式组概念解法不等式组的解集利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的基础之上.解不等式组时,先解每一个不等式,再确定各个不等式组的解集的公共部分.
有三种购买方案:购A型0台,B型10台;A型1台,B型9台;A型2台,B型8台;(2)240x+200(10-x)≥2040,解得x≥1,∴x为1或2.当x=1时,购买资金为12×1+10×9=102(万元);当x=2时,购买资金为12×2+10×8=104(万元).答:为了节约资金,应选购A型1台,B型9台.方法总结:此题将现实生活中的事件与数学思想联系起来,属于最优化问题,在确定最优方案时,应把几种情况进行比较.三、板书设计应用一元一次不等式解决实际问题的步骤:实际问题――→找出不等关系设未知数列不等式―→解不等式―→结合实际问题确定答案本节课通过实例引入,激发学生的学习兴趣,让学生积极参与,讲练结合,引导学生找不等关系列不等式.在教学过程中,可通过类比列一元一次方程解决实际问题的方法来学习,让学生认识到列方程与列不等式的区别与联系.
安装及运输费用为600x+800(12-x),根据题意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整数,所以x=2,3,4.答:有三种方案:①购买甲种设备2台,乙种设备10台;②购买甲种设备3台,乙种设备9台;③购买甲种设备4台,乙种设备8台.方法总结:列不等式组解应用题时,一般只设一个未知数,找出两个或两个以上的不等关系,相应地列出两个或两个以上的不等式组成不等式组求解.在实际问题中,大部分情况下应求整数解.三、板书设计1.一元一次不等式组的解法2.一元一次不等式组的实际应用利用一元一次不等式组解应用题关键是找出所有可能表达题意的不等关系,再根据各个不等关系列成相应的不等式,组成不等式组.在教学时要让学生养成检验的习惯,感受运用数学知识解决问题的过程,提高实际操作能力.
(一)例题引入篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分。某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?方法一:(利用之前的知识,学生自己列出并求解)解:设剩X场,则负(10-X)场。方程:2X+(10-X)=16方法二:(老师带领学生一起列出方程组)解:设胜X场,负Y场。根据:胜的场数+负的场数=总场数 胜场积分+负场积分=总积分得到:X+Y=10 2X+Y=16
三、教师总结:在那如火如荼的苦难岁月,梁任公的政治主张屡屡因时而变,但为人处世的原则始终未变,他不是冯自由等人所描述的那种变色龙。他重感情,轻名利,严于律己,坦诚待人。无论是做儿子、做丈夫、做学生,还是做父亲、做师长、做同事,他都能营造一个磁场,亮出一道风景。明镜似水,善解人意是他的常态,在某些关键时刻,则以大手笔写实爱的海洋,让海洋为宽容而定格,人间为之增色。我敢断言,在风云际会和星光灿烂的中国近代人才群体中,特别是在遐迩有知的重量级历史人物中,能在做人的问题上与梁启超比试者是不大容易找到的。四、课后作业:找出文中细节及侧面描写的地方,想一想这样写有什么好处,总结本文的写作特点。五、板书设计:梁任公演讲特点:
(1)用简洁明快的语言概括大意,不能超过200字;(2)图表中能确定的数值,在故事叙述中不得少于3个,且要分别涉及时间、路和速度这三个量.意图:旨在检测学生的识图能力,可根据学生情况和上课情况适当调整。说明:练习注意了问题的梯度,由浅入深,一步步引导学生从不同的图象中获取信息,对同学的回答,教师给予点评,对回答问题暂时有困难的同学,教师应帮助他们树立信心。第四环节:课时小结内容:本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题。通过列出关系式解决问题时,一般首先判断关系式的特征,如两个变量之间是不是一次函数关系?当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.
方法总结:要认真观察图象,结合题意,弄清各点所表示的意义.探究点二:一次函数与一元一次方程一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为()A.x=-1B.x=2C.x=0D.x=3解析:首先由函数经过点(0,1)可得b=1,再将点(2,3)代入y=kx+1,可求出k的值为1,从而可得出一次函数的表达式为y=x+1,再求出方程x+1=0的解为x=-1,故选A.方法总结:此题主要考查了一次函数与一元一次方程的关系,关键是正确利用待定系数法求出一次函数的关系式.三、板书设计一次函数的应用单个一次函数图象的应用一次函数与一元一次方程的关系探究的过程由浅入深,并利用了丰富的实际情景,增加了学生的学习兴趣.教学中要注意层层递进,逐步让学生掌握求一次函数与一元一次方程的关系.教学中还应注意尊重学生的个体差异,使每个学生都学有所获.