(1)请估计:当n很大时,摸到白球的频率将会接近(精确到0.1);(2)假如你摸一次,估计你摸到白球的概率P(白球)=;(3)试估算盒子里黑球有多少个.解:(1)0.6(2)0.6(3)设黑球有x个,则2424+x=0.6,解得x=16.经检验,x=16是方程的解且符合题意.所以盒子里有黑球16个.方法总结:本题主要考查用频率估计概率的方法,当摸球次数增多时,摸到白球的频率mn将会接近一个数值,则可把这个数值近似看作概率,知道了概率就能估算盒子里黑球有多少个.三、板书设计用频率估计概率用频率估计概率用替代物模拟试验估计概率通过实验,理解当实验次数较大时实验频率稳定于理论频率,并据此估计某一事件发生的概率.经历实验、统计等活动过程,进一步发展学生合作交流的意识和能力.通过动手实验和课堂交流,进一步培养学生收集、描述、分析数据的技能,提高数学交流水平,发展探索、合作的精神.
三:巩固新知1、判断对错:(1)如果一个菱形的两条对角线相等,那么它一定是正方形. ( )(2)如果一个矩形的两条对角线互相垂直,那么它一定是正方形.( )(3)两条对角线互相垂直平分且相等的四边形,一定是正方形. ( )(4)四条边相等,且有一个角是直角的四边形是正方形. ( )2、已知:点E、F、G、H分别是正方形ABCD四条边上的中点,并且E、F、G、H分别是AB、BC、CD、AD的中点.求证:四边形EFGH是正方形.3、自己完成课本P23的议一议四、小结1.正方形的判定方法.2.了解正方形、矩形、菱形之间的联系与区别,体验事物之间是相互联系但又有区别的辩证唯物主义观点.3.本节的收获与疑惑.
由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P(两次摸出的球都是白球)=26=13;(2)列表如下:第一次第二次 白1 白2 红白1 (白1,白1) (白2,白1) (红,白1)白2 (白1,白2) (白2,白2) (红,白2)红 (白1,红) (白2,红) (红,红)由上表可知,共有9种结果,且每种结果是等可能的,其中两次摸出白球的结果有4种,所以P(两次摸出的球都是白球)=49.方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.三、板书设计用树状图或表格求概率画树状图法列表法通过与学生现实生活相联系的游戏为载体,培养学生建立概率模型的思想意识.在活动中进一步发展学生的合作交流意识,提高学生对所研究问题的反思和拓展的能力,逐步形成良好的反思意识.鼓励学生思维的多样性,发展学生的创新意识.
∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可证:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四边形EFGH为菱形.∵EO+GO=FO+HO,即EG=HF,∴四边形EFGH为正方形.方法总结:对角线互相垂直平分且相等的四边形是正方形.探究点二:正方形、菱形、矩形与平行四边形之间的关系填空:(1)对角线________________的四边形是矩形;(2)对角线____________的平行四边形是矩形;(3)对角线__________的平行四边形是正方形;(4)对角线________________的矩形是正方形;(5)对角线________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法总结:从对角线上分析特殊四边形之间的关系应充分考虑特殊四边形的性质与判别,防止混淆.菱形、矩形、正方形都是平行四边形,且是特殊的平行四边形,特殊之处在于:矩形是有一个角为直角的平行四边形;菱形是有一组邻边相等的平行四边形;而正方形是兼具两者特性的更特殊的平行四边形,它既是矩形,又是菱形.
证明:如图,过点C作CF∥PD交AB于点F,则BPCP=BDDF,ADDF=AECE.∵AD=AE,∴DF=CE,∴BPCP=BDCE.方法总结:证明四条线段成比例时,如果图形中有平行线,则可以直接应用平行线分线段成比例的基本事实以及推论得到相关比例式.如果图中没有平行线,则需构造辅助线创造平行条件,再应用平行线分线段成比例的基本事实及其推论得到相关比例式.三、板书设计平行线分线段成比例基本事实:两条直线被一组平行线所截, 所得的对应线段成比例推论:平行于三角形一边的直线与其他 两边相交,截得的对应线段成比例通过教学,培养学生的观察、分析、概括能力,了解特殊与一般的辩证关系.再次锻炼类比的数学思想,能把一个复杂的图形分成几个基本图形,通过应用锻炼识图能力和推理论证能力.在探索过程中,积累数学活动的经验,体验探索结论的方法和过程,发展学生的合情推理能力和有条理的说理表达能力.
五、回顾总结:总结:1、投影、中心投影 2、如何确定光源(小组交流总结.)六、自我检测:检测:晚上,小华在马路的一侧散步,对面有一路灯,当小华笔直地往前走时,他在这盏路灯下的影子也随之向前移动.小华头顶的影子所经过的路径是怎样的?它与小华所走的路线有何位置关系?七、课后延伸:延伸:课本128页习题5.1八、板书设计投影 做一做:投影线投影面 议一议:中心投影九、课后反思本节课先由皮影戏引出灯光与影子这个话题,接着经历实践、探索的过程,掌握了中心投影的含义,进一步根据灯光光线的特点,由实物与影子来确定路灯的位置,能画出在同一时刻另一物体的影子,还要求大家不仅要自己动手实践,还要和同伴互相交流.同时要用自己的语言加以描述,做到手、嘴、脑互相配合,培养大家的实践操作能力,合作交流能力,语言表达能力.
故线段d的长度为94cm.方法总结:利用比例线段关系求线段长度的方法:根据线段的关系写出比例式,并把它作为相等关系构造关于要求线段的方程,解方程即可求出线段的长.已知三条线段长分别为1cm,2cm,2cm,请你再给出一条线段,使得它的长与前面三条线段的长能够组成一个比例式.解析:因为本题中没有明确告知是求1,2,2的第四比例项,因此所添加的线段长可能是前三个数的第四比例项,也可能不是前三个数的第四比例项,因此应进行分类讨论.解:若x:1=2:2,则x=22;若1:x=2:2,则x=2;若1:2=x:2,则x=2;若1:2=2:x,则x=22.所以所添加的线段的长有三种可能,可以是22cm,2cm,或22cm.方法总结:若使四个数成比例,则应满足其中两个数的比等于另外两个数的比,也可转化为其中两个数的乘积恰好等于另外两个数的乘积.
(三)成比例线段的概念1、一般地,在四条线段中,如果 等于 的比,那么这四条线段叫做成比例线段。(举例说明)如:2、四条线段a,b ,c,d成比例,有顺序关系。即a,b,c,d成比例线段,则比例式为:a:b=c:d;a,b, d,c成比例线段,则比例式为:a:b=d:c3思考:a=12,b=8,c=6,d=4成比例吗?a=12,b=8,c=15,d=10呢?三、例题解析: 例1、A、B两地的实际距离AB= 250m,画在一张地图上的距离A'B'=5 cm,求该地图的比例尺。例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜边AB=2。求⑴ ,⑵ 四、巩固练习1、已知某一时刻物体高度与其影长的比值为2:7,某 天同一时刻测得一栋楼的影长为30米,则这栋楼的高度为多少?2、某地图上的比例尺为1:1000,甲,乙两地的实际距离为300米,则在地图上甲、乙两地的距离为多少?3、已知线段a,d,b,c是成比例线段,其中a=4,b=5,c=10,求线段d的长。
(1)填写表格中次品的概率.(2)从这批西装中任选一套是次品的概率是多少?(3)若要销售这批西装2000件,为了方便购买次品西装的顾客前来调换,至少应该进多少件西装?六、课堂小结:尽管随机事件在每次实验中发生与否具有不确定性,但只要保持实验条件不变,那么这一事件出现的频率就会随着实验次数的增大而趋于稳定,这个稳定值就可以作为该事件发生概率的估计值。七、作业:课后练习补充:一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球与10的比值,再把球放回袋中摇匀。不断重复上述过程5次,得到的白求数与10的比值分别为:0.4,0.1,0.2,0.1,0.2。根据上述数据,小亮可估计口袋中大约有 48 个黑球。
三:巩固新知1、判断对错:(1)如果一个菱形的两条对角线相等,那么它一定是正方形. ( )(2)如果一个矩形的两条对角线互相垂直,那么它一定是正方形.( )(3)两条对角线互相垂直平分且相等的四边形,一定是正方形. ( )(4)四条边相等,且有一个角是直角的四边形是正方形. ( )2、已知:点E、F、G、H分别是正方形ABCD四条边上的中点,并且E、F、G、H分别是AB、BC、CD、AD的中点.求证:四边形EFGH是正方形.3、自己完成课本P23的议一议四、小结1.正方形的判定方法.2.了解正方形、矩形、菱形之间的联系与区别,体验事物之间是相互联系但又有区别的辩证唯物主义观点.3.本节的收获与疑惑.
由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P(两次摸出的球都是白球)=26=13;(2)列表如下:由上表可知,共有9种结果,且每种结果是等可能的,其中两次摸出白球的结果有4种,所以P(两次摸出的球都是白球)=49.方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.三、板书设计用树状图或表格求概率画树状图法列表法通过与学生现实生活相联系的游戏为载体,培养学生建立概率模型的思想意识.在活动中进一步发展学生的合作交流意识,提高学生对所研究问题的反思和拓展的能力,逐步形成良好的反思意识.鼓励学生思维的多样性,发展学生的创新意识.
二、教学要求:1、教幼儿能够对大小区别较明显的4-6个物体,按从小到大或从大到小的顺序进行排序。2、复习5以内的数数。三、教学准备1、实物套娃1套2、大小不同颜色不同的圆形塑料片一组5张,每人一组。
课程名称数学授课教师赵娜授课章节第四章第四节对数授课时间2015—2016年第一学期 第2周第1次课授课班级15级一班,15级二班,15级三班,15级四班,15级五班,15级六班,15级七班教学目的⑴ 理解对数的概念,理解常用对数和自然对数的概念; ⑵ 掌握利用计算器求对数值的方法; ⑶了解积、商、幂的对数.教学重点 和难点【教学重点】 指数式与对数式的关系. 【教学难点】 对数的概念.复习提问(1) 指数函数图像的性质本课小结⑴ 理解对数的概念,理解常用对数和自然对数的概念; ⑵ 掌握利用计算器求对数值的方法; ⑶了解积、商、幂的对数.布置作业练习册p7页1-4题检查签字 检查日期
一、 活动目标:1、 学习用记录统计的方法比较物品的多少,感知数学在生活中的作用。2、 探索运用自己喜欢的方式进行记录,从中比较出最快速最清楚的记录方法。3、 尝试商讨合作式的学习,学会肯定自己和倾听他人的意见。二、 活动准备1、 录音机、磁带;小猫、小狗、小兔木偶;金牌一枚;画有小猫、小狗、小兔的记录纸和空白表格若干,记号笔人手一支2、 大格子图及皮球、沙包、绳子;
【教学目标】1、掌握区间的概念;2、用区间表示相关的集合;3、通过数形结合的学习过程,培养学生的观察能力和数学思维能力。【教学重点】区间的概念【教学难点】 区间端点的取舍【教学设计】 1、实例引入知识,提升学生的求知欲;2、数形结合,提升认识;3、通过知识的巩固与练习,培养学生的思维能力【课时安排】 1课时(45分钟)【教学过程】² 创设情景 兴趣导入问题:资料显示:随着科学技术的发展,列车运行速度不断提高.运行时速达200公里以上的旅客列车称为新时速旅客列车.在北京与天津两个直辖市之间运行的,设计运行时速达350公里的京津城际列车呈现出超越世界的“中国速度”,使得新时速旅客列车的运行速度值界定在200公里/小时与350 公里/小时之间.如何表示列车的运行速度的范围??解决:不等式:200<v<350;集合:;数轴:位于200与3之间的一段不包括端点的线段;还有其他简便方法吗?
一:活动目标1、 能按顺序的进行细致的观察,将衣着相同的两个小熊找出来;2、 提高幼儿的视觉辨别能力。二:活动准备1:挂图:〈〈视觉辨认〉〉;2:幼儿用书:〈〈我的数学〉〉第22页;3:小熊卡片24张,裤子线条、颜色一样的,各6张,分4组;4:水彩笔、粉笔。
《纲要》明确指出:教育内容应“贴近幼儿的生活来选择幼儿感兴趣的事物和问题,有助于拓展幼儿的经验的视野”,幼儿园数学教育不是为纯粹的教育而教育,是一种以幼儿生活为特征的教育,这就要求我们要立足幼儿的生活实际,紧密联系幼儿的生活来开展教育。像我班小朋友午睡起床,常有孩子把鞋子、袜子拿错、穿反。根据小班幼儿年龄特点,我设计了以鞋子、袜子、鞋垫为活动材料的《找朋友》数学活动,引导孩子在原有的生活经验上关注物体的形状、大小、颜色的不同,进行配对。在游戏中自然渗透数学的概念,达到“玩中学,玩中教”的目的。活动的目标对活动起着导向性作用,根据本班幼儿的年龄特点和实际情况,确立了情感、能力等方面的目标.其中有探索认知部分,也有操作部分,具体目标是:1、认识目标:(1)、初步形成“双”的概念,知道一双有两只。(2)、能按鞋子、袜子、鞋垫的外形,颜色,大小等特点进行配对。2、能力目标:发展幼儿的观察力、记忆力、创造力和想象力。3、情感目标:体验与教师、同伴游戏的快乐;初步感受改编儿歌的乐趣,从而激发幼儿的求知欲。
二、活动材料:小动物卡片若干;画有汽车的操作卡人手一份,幼儿记录卡人手一份,糖果盒人手一份;背景图一幅,糖果若干。 三、活动过程:(一)、导入活动再过几天就要过圣诞节了,森林里准备搞一场大型的圣诞舞会,许多小动物都要去参加。看,长长的车队开来了,数数来了几辆小汽车?(6)—出示汽车操作卡。哟,每辆汽车上都有一个6,猜猜看,什么意思?(幼儿自由表述)对了,每辆汽车上只能坐6个小动物。(二)、基本活动1、来,看看你身边的动物卡片,他们一样吗?(数量不一样)2我们小朋友一起帮帮你身边的小动物们,把他们一起送上汽车。记住:每辆小汽车上的小动物的数量合起来一定要刚好是6。幼儿操作活动,教师巡回指导。请幼儿说说,你的车上都坐了哪些小动物。(例:我的第一辆车上坐了一只小白兔,5只小花猫;第二辆车上……)小组交流,个别回答。小朋友说的都很好,现在老师要请你们把送小动物的结果记录下来。看,这是一张记录纸,纸上画的是6辆小汽车,和我们的小汽车排一样的队,(你的第一辆车上坐的是一只小白兔和5只小花猫,你就在第一辆车里写上数字1和5)。
一.教学内容。我今天说课的内容是新人教版教材小学数学六年级上册第一单《分数乘法》例5《小数乘分数》。这部分是教材新增加的内容,用一课时进行教学。二.说教材。1.教材分析本部分的教学是在学生掌握了整数乘法、小数乘法、分数乘法、以及整数和小数混合运算、简便计算的基础之上进行的教学。教学中不仅涉及到分数与小数的互化,假分数与带分数的互化,整数与分数的互化,而且对如何判断一个分数是否能化成有限小数等知识都会涉及。通过教学本例题要使学生经历探究计算方法的过程,运用多样化的解题思路开拓学生的计算思维,提高学生的计算能力。为教学例6、例7的分数混合计算和简便计算奠定基础。
一、说教材说课的内容是《义务教育课程标准实验教科书 数学》人教版一年级上册第五单元:《6—-10的认识和加减法》中的第二课时。这部分教材是为学生快速而正确进行6和7加减法计算做铺垫的内容。在这一阶段通过让学生初步经历从日常生活中抽象出数的过程,借助于生活中的实物和学生的操作活动进行教学,为学生了解数学的用处和体验数学学习的乐趣打下扎实的基础。基于以上认识,我确定本课的教学目标为:1.知识目标:通过动手摆学具教学使学生学会从实际生活中抽象出数,掌握6和7的组成。2.能力目标:培养学生观察、动手操作、口头表达的能力,渗透数学来源于生活,理解数学与日常生活的紧密联系,并运用于生活的辨证唯物主义思想。3.情感目标:通过探究活动,激发学生学习的热情,培养学生主动探究的能力。教材的重点、难点:本节课的重点是:掌握6、7的组成。本课难点是:‘6、7的组成’在实际中的灵活运用。