西大滩加油站到了,这是离藏区最近的青海加油站,海拔4150米,周围都是无边无垠的荒原。路过这里的司机,无论多晚,只要叫一声老韩,一个瘦小的男人就颠颠地奔出,披着军大衣,双手习惯性地拢在腰间。到了近前,老韩解开大衣纽扣,原来怀中藏着的是一只热水袋。寒潮一过境,加油站上就刮着吹哨子—般的寒风,气温很快降到零下20摄氏度,加油枪就容易被冻住,得用热水袋把它慢慢暖开。
许慎的《说文》中讲:“亭,亭也,人所停集也。凡驿亭、邮亭、园亭,并取此义为名。”亭的历史十分悠久,一直可以上溯到商周以前。但是亭字的出现,却相对较晚,大致始于春秋战国前后。甲骨文,金文中均未见有亭字,现在发现的最早的亭字,是先秦时期的古陶文和古玺文。因此,在秦以前,亭的基本形制或许并不是十分成熟,但是到秦汉时,亭已经十分普遍了,是一种有着多种用途,实用性很强的建筑。
南乡子·登京口北固亭有怀辛弃疾何处望神州?满眼风光北固楼。千古兴亡多少事?悠悠。不尽长江滚滚流。年少万兜鍪,坐断东南战未休。天下英雄谁敌手?曹刘。生子当如孙仲谋。
当前,我市上下正紧紧围绕“全面领先苏中、抢先跨过长江、率先实现小康,争当苏中第一强市”的“三先一争”奋斗目标,大力实施“工业化、国际化、城市化,建设社会主义新农村”的“三化一新”发展战略,各项工作正在如火如荼的进行之中。中共__市第十二次代表大会提出要精心构筑两大经济带,其中重要的一环就是要大力度整合沿路资源,充分发挥大交通的优势,实现人流、物流、信息流的快速顺畅流动,催生一批项目群,促进沿线乡镇产业的合理布局和快速发展,使高等级公路沿线成为我市中部工业经济新的集聚带。随着__公路拓宽改造工程的开工,我们坚信,中部经济带一定会强势崛起,一定会成为__经济社会发展的重要一极。
(二)把握亮点,优质服务。我市组委会明确了唱响一个主题。那就是民族团结进步。夯实两个基础。一是服务基础。推进公共服务均等化,着力改善民生,让少数民族群众融得进、留得住、能致富,享受改革开放的发展成果。二是团结基础。引导各族群众牢固树立正确的祖国观、历史观、民族观,正确看主流,多看光明面,尊重、包容、交往、交心、交流,依法保障民族团结。
说教材内容:本节课是小学数学第五册第六单元多位数乘一位数中的内容,笔算乘法是本单元的教学重点。主要解决的问题如下:笔算过程中从哪一位乘起、怎么进位和竖式的书写格式。例2主要是解决两位数乘一位数、个位积满十需向十位进位的问题。由于学生是初次学习进位,例2的数字较小,主要是方便学生理解进位的道理。】教学内容:多位数乘一位数的乘法(进位)(书76页例2)教学目标:1、初步掌握因数是一位数的进位乘法的算法。2、正确、熟练地进行计算。【说教学目标:这节课是学会了笔算竖式以及算理的基础上进行教学的,教学目标主要有:理解进位的道理,掌握多位数乘一位数的计算方法;能正确、熟练的计算。】教学重点:正确计算两、三位数乘一位数(进位)。教学过程:一、揭示课题:多位数乘一位数的笔算乘法(进位)
3、做练习十六第4题我用创设情境导入,接着让学生用竖式计算,并提问2是哪来的。创设情境,激发学生兴趣,使他们积极思考,主动参与,活跃课堂气氛,轻轻轻松做数学。4、判断题。让学生判断是对还是错,并说错在哪并改正。通过判断,加深学生对用竖式乘法的认识。5、做拼图题。全班合作把题完成。这道题我设计题的下面有天安门前美丽的景色。和前面文昌重建家圆相呼应。构成一个完整现实情境。通过全班合作培养学生的合作意识。四、课堂小结第四环节:总结归纳让学生说说今天学到了什么?在学生总结的同时,教师用规范的语言复述笔算乘法的计算的方法1、相同数位要对齐,2、从个位乘起,3、乘到哪一位上积就写在那一位上。使学生对所学知识有一个清晰的结构。课堂是富有生命的,说课设计毕竟不是现场上课,所以面对课堂上的生成我们还需要作出灵活的应对,我想这才是我们最大的挑战。
1、、用多媒体幻灯片逐一出示各种图片。创设问题情境。引导学生提出用乘法计算问题。内容:邮局邮票出售处,有的邮票一枚80分,有的邮票一枚60分。百货商店鞋柜,一双旅游鞋78元,一双皮鞋164元。电影院售票处:日场一张电影票15元,夜场一张电影票20元。小袋鼠蹦跳一次约2米,小袋鼠蹦跳33次。文具商店柜台,每合图钉120个,每包日记本25本。2、出示教科书第70页例2主题图:三年纪一班29个同学去参观航天航空展览,门票每张8元。请学生提出问题,老师在学生提出问题的基础上,补充提出如果老师这时只带250元钱去够吗?二、尝试解决。1、教师先请学生猜一猜带250元够不够?再请学生思考怎么知道我们猜得对不对呢?看看小精灵是怎么说的?2、怎么才能知道8×29大约是多少呢?能不能用我们前面学过的计算方法来解决这个问题。3、启发学生想出前面我们已经学过整十乘一位数的乘法口算。我们可以把29看成最接近的整十数来估算。
三、说教法、学法从素质教育着眼点来看,要贯彻传授知识与培养能力相结合的原则,不仅要使学生学会知识,更要使学生会学、乐学、主动去学。为了更充分地发挥学生的主体地位,使他们能够自主学习,切实提高课堂教学效率。在教学方法上,采用谈话激趣、回忆交流、讨论归纳、强化练习等教学方法,循循诱导,让学生在比赛、游戏、练习、合作中自主学习,巩固和拓展所学知识。四、说教学过程“将课堂还给学生,让课堂焕发生命的活力”“努力营造学生在教学活动中自主学习的时间和空间”从这种设计理念出发,为了更好的达到教学目标,突出重点,增强教学效果,使学生计算能力得到真正发展,我对本节课设计如下几个环节:(一)、激趣导入。同学们,这几天我们一直在学习多位数乘一位数的知识,你们想不想知道我们今天要学习什么知识?
然后我让自主尝试探索末尾有0有乘法,然后让学生自己上台来给大家展示各自的算法,并讨论比较那种算法更简便,从而总结出末尾有0的乘法列竖式的简便方法。为了解决这节课的重点和难点,我在这个环节里又有针对性的设计了两个练习,一个是0和非0的对位,还有一个是积末尾补0。在教学因数中间有0的乘法,因为学生有了前面的基础,所以我直接让学生在两个问题中选择一个解决。重点强调了因数中间0不能漏乘。在练习方面,我设计了看谁的眼睛亮,通过找错误,学生练习时,老师观察到有共性的的错误,通过视频展示台,让学生来寻找错误,再次突破本课的重点。一题是360×25因数末数一共有一个0,而积的末尾应该有三个0。让学生进行讨论,再一次让学生体会了积末尾0个数确定的方法。在巩固和拓展联系环节,设计了闯关游戏,先是基本的计算练习,接着是因数末尾0个数的判断和解决问题的联系,通过练习,巩固竖式的简便写法,提高学生的计算能力。
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
探究点二:用配方法解二次项系数为1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左边不是一个完全平方式,需将左边配方.解:移项,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.开平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法总结:用配方法解一元二次方程时,应按照步骤严格进行,以免出错.配方添加时,记住方程左右两边同时加上一次项系数一半的平方.三、板书设计用配方法解简单的一元二次方程:1.直接开平方法:形如(x+m)2=n(n≥0)用直接开平方法解.2.用配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n(n≥0)的形式,再用直接开平方法,便可求出它的根.3.用配方法解二次项系数为1的一元二次方程的一般步骤:(1)移项,把方程的常数项移到方程的右边,使方程的左边只含二次项和一次项;(2)配方,方程两边都加上一次项系数一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;(3)用直接开平方法求出它的解.
探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.
(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:
二、合作交流活动一:(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
老师们、同学们,大家早上好这是XX年新年的第一个升旗仪式,在这个憧憬未来、祝福明天的美好时刻,我们的心情都有新的感受和希望。过去的一年,黄冈天有高中每一点新的进步都带给我们喜悦和快乐,这些收获来自全体黄冈天有高中人的辛勤劳动。因此,在这个时刻,请允许我代表校委会向辛勤耕耘的老师们致以崇高的敬意和新年的祝福,面对纷繁复杂的世界,是每一位可亲可敬的老师,呕心沥血、教书育人,引导着同学们不断提高自身的文化知识素养。不断提升精神境界,不断开拓理性视野,逐渐领略到文化科学知识的璀璨风光。我也要向在管理和服务岗位上勤勉工作的教职员工表示诚挚的问候,是你们扎扎实实、耐心、细致、周到、创造性的工作,为罗西中学在新阶段的发展,营造了和谐稳定发展的氛围和环境。我更要以最饱满的热情,向我们充满朝气活力的同学们致以新年的问候。你们身上表现出来的奋发进取、立志成才的精神、你们肩上承载着的对自己、对家庭、对社会的责任,你们在奋进中展现出来的为实现理想而顽强拼搏的意志,正是我校“做人、求知、成才、报国”校训的内涵,也是罗西学生优秀的传统作风。我们有理由相信,在新的一年里,你们会有新的进步,在未来的岁月里,你们会成为社会的有用人才。
1.以人为本,预防为主。把保障人民群众生命安全作为首要任务,最大限度地减少突发事件对人民生命的威胁和危害。完善各项工作机制,防患于未然。2.统一领导,分级负责。各部门在指挥部统一领导下,具体负责落实各自应急处置工作的各项事项。3.系统联动,资源整合。按照条块结合的要求,充分依靠和利用各相关部门应急指挥机构、人员、设备、物资、信息等资源的协助作用。4.快速反应,协同配合。建立健全处置突发事件的快速反应机制,一旦出现突发事件,快速反应,科学应对。
活动过程:一、调动已有经验,回忆相关知识。1、前段时间我们小朋友和老师一起做了有关时钟的调查,知道时钟有好多好多种。现在请你看看老师从网上下载的钟,看看你认识它吗?2、依次出示幻灯片,幼儿讲名称。3、刚才我们所见到的只是时钟家族的一部分,它可能还有其他的种类,我们以后再来探讨。4、上次我们已经认识过钟面,来告诉大家,最长的针叫(秒针),有点长的针叫(分针),最短的针叫时针。钟面上一共有多少个数字(12),最上面的是数字12,然后依次是1、2……11。请你好好回忆一下,时钟里的指针是朝哪一个方向走的?(1……12)对了,这样的方向就叫顺时针方向。
这一环节的设计,我运用直观和操作的方法,调动小学生耳、眼、口、手多种感官参与学习活动,并且互相配合使学生的大脑保持兴奋状态,有利于学生形成完整正确的方位要领。而且使分类与方位结合在一起,让学生在玩中逐步了解到一个数学知识不可能单一存在,在生活中处处都存在多种的数学知识。(三)练中生趣,以趣促练1、出示一副美丽的田野风光,看到这么美的场景,同学们可展开想象的翅膀,随意添上你想加的物体,并且运用学过的知识小组间互相说几句话。这时学生有的加上一轮红日,有的加有一轮明月,有的可能画上一朵小花……小组间展开了激烈的讨论,都可以准确的说出谁在谁的上面,谁在谁的下面等等这些相对位置的话。2、课件展示一所空着的4层楼房,请同学们拿出手中喜欢的动物图片贴在空房子里,互相说一说你第一层、第二层、第三层、第四层分别贴的是哪些小动物,用我们学过的知识再说一说谁住在最下面,是第几层,第二层住的是谁,它在谁的上面、谁的下面,第三层呢?