课堂上随机给出鼓励和肯定的语言更显教师的亲和力,营造出一个自由、民主的课堂教学氛围。如:“你很棒”“说得太好了”“掌声鼓励”等等,听似平淡无奇,但结合那时那景则显得老师语言的朴实与自然,学生同老师间的默契与和谐。听完朱老师执教的《西风的话》一课,通过认真反思我真切认识到:一堂好课是否愉悦高效,就看教师是否真正用心的地去诠释作品,真正用心地去备课。孙老师执教的《西风的话》平实、淡雅,教师教态自然大气,言谈中充满着激情,让我们的心不自觉跟着一起走。我想不出什么华丽的词藻来描述这堂课,但我却深深地被吸引,这应该就是生命课堂的魅力所在吧。听了孙老师执教的《西风的话》后收获很多,能于言表的也还没有表达充分,但更多的是带给我的触动和对自己所教学科如何“高效愉悦”的思索。也希望凭借着“高效愉悦”课堂活动的深入开展,让自己的美术课堂灵动起来,让我们的课堂真正成为孩子们探求知识的乐园。
一.情境引入:师:我们生活在一个变化的世界中,很多东西都在悄悄地发生变化你能从生活中举出一些发生变化的例子吗?生1:从春季到夏季气温在逐渐增加.生2:小树每年都在长高长粗.生3:我杯子里的水喝一口少一口.(说着就拿起杯子喝水,引起同学哈哈大笑)师: 你这个变化中有几个量在变化?生3:两个,一个是喝的口数,一个是水的多少?师: 它们的变化有什么联系吗?生3:有,随着喝的口数的增加,瓶中的水越来越少.生4:那我的这张纸越撕越小(此时该同学顺便从自己本子上撕下一张纸并将这张纸一次一次的撕下去,其他同学们点头称是)师: 你这个变化中又有几个量?它们又是怎么变化的?生4:两个,一个是撕的次数,另一个是纸的大小.师:那么哪个量随哪个量的变化而变化的呢?
解:(1)电动车的月产量y为随着时间x的变化而变化,有一个时间x就有唯一一个y与之对应,月产量y是时间x的因变量;(2)6月份产量最高,1月份产量最低;(3)6月份和1月份相差最大,在1月份加紧生产,实现产量的增值.方法总结:观察因变量随自变量变化而变化的趋势,实质是观察自变量增大时,因变量是随之增大还是减小.三、板书设计1.常量与变量:在一个变化过程中,数值发生变化的量为变量,数值始终不变的量称之为常量.2.用表格表示数量间的关系:借助表格表示因变量随自变量的变化而变化的情况.自变量和因变量是用来描述我们所熟悉的变化的事物以及自然界中出现的一些变化现象的两个重要的量,对于我们所熟悉的变化,在用了这两个量的描述之后更加鲜明.本节是学好本章的基础,教学中立足于学生的认知基础,激发学生的认知冲突,提升学生的认知水平,使学生在原有的知识基础上迅速迁移到新知上来
5、交流。学生可能有按照长方体的表面积的计算方法计算的。交流时注意引导学生比较哪种方法最简便,同时明确在正方体表面积的计算公式中为什么要乘6。7、质疑问难。8、揭示表面积的含义:刚才我们在求做长方体和正方体纸盒至少各要用多少硬纸板的问题时,都算出了它们6个面的面积之和,长方体和正方体6个面积的总面积,叫做它的表面积。(三)巩固练习,扩展应用。(10分)数学来源于生活,又服务于生活,学生学到的知识通过应用才能真正理解和掌握。1、书中的习题。15页练一练、17页1、5题。通过有目的的基本练习、巩固练习、综合练习,使学生进一步加深了对新知识的理解。强化了学生运用新知解决实际问题的能力,使学生形成了一定技能技巧。
一、教学内容本节课是九年义务教育六年制小学数学教科书(新人教版)二年级下册第42页的例3的内容。二、教材分析例3是用除法解决问题的内容,和“表内乘法(二)”中的解决问题相对应。这个题目中所涉及的数量已由离散量扩展到连续量,由实物个数扩展到了取自于量的数量,它所反映的数量关系是除法现实模型的拓展,渗透了单价、数量、总价的数量关系,需要学生根据除法的含义来解决。“想一想”是继续深化学生对除法意义的理解,并培养了学生发现问题,提出问题的能力。三、教学目标1、根据除法的意义,初步理解数量、单价、总价的数量关系,会用除法解决生活中与此数量有关的实际问题。2、将处罚扩展到连续量中去,深化学生对除法含义的理解。3、培养学生从具体生活情境中发现问题,根据问题筛选有用的信息从而培养解决问题的能力。
一、教材分析长方体和正方体的表面积是人教版教材五年级下册第三单元第二章节的内容。本节课的地位和作用:这部分内容是在学生学习了长方体和正方体的认识以及掌握了长方形和正方形面积的计算方法的基础上进行教学。教材中各年级涉及到的内容如下:长方体和正方体的表面积这部分内容,是在学生认识并掌握了长方体和正方体特征的基础上教学的。教材为了使学生更好地建立表面积的概念,加强了动手操作,让每个学生拿一个长方体或正方体纸盒,沿着棱剪开,再展开,观察展开后的形状。并分别用“上”“下”“前”“后”“左”“右”标明6个面。这样,可以使学生把展开后每个面与展开前这个面的位置联系起来,更清楚地看出长方体相对的面的面积相等,以及每个面的长和宽与长方体的长、宽、高之间的关系,既让学生明确了表面积的含义,又为下面学习计算长方体和正方体的表面积做好了准备。
一、教材分析《圆柱的表面积》是九年义务教育小学数学六年级下册(人教版)第21-22页例3例4,第21-22页“做一做”,练习四的教学内容。这部分内容是在学生已经探索并掌握圆柱的基本特征的基础上教学的。同时,此前对圆面积公式的探索以及对长方体特征和表面积计算方法的探索也为了学习本课内容奠定了知识的基础。教材设置了两个例题。例3主要引导学生通过动手操作探索圆柱侧面积的计算方法。然后,通过例4引导学生利用圆柱表面积的计算方法解决实际问题。教材这样安排,意在让学生经历圆柱侧面积、表面积计算方法的推导过程,理解这些方法的来源,通过自己的操作,观察、比较、推理、归纳等经历知识形成的过程,完善关于几何形体的知识结构,丰富学生“空间与图形”的学习经验,形成初步的空间观念,为今后进一步学习形体知识打下基础。
②癌症患者在治疗过程中,会有很大的身体损耗,而黄鳝有很好的滋补作用,适当吃一点黄鳝,既能够为患者补充营养,也能够提高患者的身体免疫力。 (来源于报纸)经过讨论交流,每一组一名同学自主发言,老师点拨,最后形成小结。看来源 要权威发布,不要道听途说看内容 要事实清晰,不要模糊遗漏看立场 要客观公允,不要情绪煽动看逻辑 要严谨准确,不要简单断言情感判断 理性判断 理性表达(四)活动三,重实践新课标提到,语文课程应引导学生在真实的语言运用情境中,通过自主的语言实践活动,积累经验,把握规律,培养能力。据此,我设计了以下贴近学生生活、可参与性强的活动。多媒体展示案例,仍然是先讨论交流,再自主发言,说出案例有哪些问题。这是某校园论坛上的一则寻物启示。
概括出祖母的形象:祖母是一位对我恩重如山,身缠重病,风烛残年的老人。(紧扣“婴”,)了解作者身世:“生孩六月,慈父见背;行年四岁,舅夺母志。祖母刘,悯臣孤弱,躬亲抚养。臣少多疾病,九岁不行,零丁孤苦,至于成立。既无伯叔,终鲜兄弟;门衰祚薄,晚有儿息。外无期功强近之亲,内无应门五尺之僮。茕茕孑立,形影相吊。”(概括明确:“孤苦”“孤弱”,突出“孤”)【先分析“应该尽忠”和“不得不去尽忠”,再分析“不能去尽忠”,避免了串讲课文的平淡与枯燥,使课堂有了波澜。】(三)追问探究,察理析忠孝问题:只说自身孤苦、祖母多病是“以情动人”,或许能打动一个君王,但是对于像晋武帝这样一个君王就很难说了。晋武帝究竟是一个什么样的君王?李密又是用什么理由说服他的呢?其间体现了作者怎样的机变和才智呢?
4、学习任务三:品读,赏析特色,深入探究。(解决“为什么这么陈情“的问题)文学史上,以获得“高难度”的险助而又收“高效率”奇功的,首推李密的《陈情表》。“抗君命”、“逆圣旨”,李密是为“辞不赴命”而上书的。让学生再读课文,结合导学案中的背景介绍,思考作者为什么这样陈情。 【方法导引】再读文本,深入思考作者除了从亲情入手打动晋武帝,还从哪些方面陈情以达到自己想要的效果?要求:独立思考,小组合作,梳理归纳,到黑板上展示。教师补充归纳:本文出于情,归于理,先动之以情,再晓之以理。李密是亡国旧臣,惹恼晋武帝,会被株连九族。先以祖孙相依为命的亲情凄切婉转的表明心意,唤起晋武帝的怜悯之心,再以“报国恩”“徇私情”的两难和朝廷以“孝”治国以及自己为官追求等,打消皇帝疑虑,最终提出先尽孝后尽忠的解决方案,以情动人,构思缜密。整篇《陈情表》密布着感情的浓云,陈情于事,寓理于情,凄恻动人。
教后反思本节课给学生创设了良好的活动空间,把学生实际生活中听说过的见到的平均分现象展示给学生看,把生活和数学联系起来,在学生感受“同样多”的基础上概括出什么叫平均分。揭示平均分这一数学知识在生活中的应用,之后突出了学生三次实际操作。第一次,小组同学互相分水果,重视学生分的结果。体会感受“平均分”的含义。第二次,重视分法:15个橘子平均分成5份。体现了学生对物品的不同分法,建立了平均分的概念。第三次,分矿泉水,通过份数变化,观察分的就结果,深刻体会“平均分”,为认识除法积累丰富的知识。为学生营造探索的空间。第二课时:平均分的认识(二)教学内容巩固“平均分”。课本第15页的例题3。教学目标1.巩固“平均分”的概念,知道平均分就是每一份分得结果同样多。
三维目标1.知识与技能(1)让学生经历用7、8、9的乘法口诀求商的过程,掌握用乘法口诀求商的一般方法。(2)使学生会综合应用乘、除法运算解决简单的或稍复杂的实际问题。2.过程与方法在解决问题的过程中,让学生初步尝试运用分析、推理和转化的学习方法。3.情感、态度与价值观让学生在学习中体验到成功的喜悦,增强学生学好数学的信心。重、难点与关键1.重点:使学生熟练应用乘法口诀求商,经历从实际问题中抽象出一个数是另一个数的几倍的数量关系的过程,会用乘法口诀求商的技能解决实际问题。2.难点:应用分析推理将一个数是另一个数的几倍是多少的数量关系转化为一个数里面有几个另一个数的除法含义。3.关键:以解决问题为载体,培养学生的数感。
第三个环节——巩固应用按从易到难的原则,设计了4道检测题,引导学生综合运用所学的知识和技能,提高解决问题的能力,并从中体验解决问题的乐趣。第四个环节——全课小结首先学生谈收获,教师进行恰当评价。此环节通过师生互动、生生互动,经历一次再学习、再巩固的过程。教学反思:一、还应展开对字母表示数和数量关系的具体意义的交流性阐释。虽然在教学中我十分注重让学生在生活情境中轻松地抽象数学模型和理解新知,但是由于过分关注教学进度,学生没有时间结合具体情境全面地表述含有字母的式子所表示的意义。二、对学生的建模能力培养还应加强训练。每一次让学生表述字母和含有字母的式子表示什么意思时,学生还没有来得及充分思考,我总是忍不住着急地引导。其实,如果放手让学生交流、讨论,让他们自己进行抽象概括,他们还是能解决的。
本节课是学习两位数乘两位数的乘法竖式计算,掌握其计算程序,理解其计算的道理;特别要理解两位数乘两位数的乘法竖式与一位数乘两位数乘法竖式从内容到形式之间的实质性的联系。这样就为四年级学习两位数乘三位数的乘法打好了基础,即把两位数乘两位数的竖式乘法的计算程序迁移到两位数乘三位数的情形。本节课是在上节课学习14×12的横式笔算的基础上,继续学习14×12的竖式计算。教科书中提出了三个问题。第一个问题尝试用竖式计算14×12;第二个问题结合点子图解释第一个问题中竖式每一步和意思,促进对竖式的理解;第三个问题总结两位数乘两位数竖式笔算的程序(法则),能根据计算程序正确地进行计算。综上所述,本节课的难点和关键就是将计算步骤与点子图相对应,直观理解竖式笔算的算理。竖式计算时,每一次数字运算的结果都应该写一它合适的位置上。
(四)联系生活巩固练习培养能力这一环节是内化知识,训练思维,培养能力,形成技能的重要环节,因而我设计的练习题在注重知识运用的前提下,注意联系学生的生活实际,让学生把所学的知识运用于解决生活中的实际问题中,使学生感受到数学与生活的紧密联系,数学来源于生活又作用于生活。这一过程我安排了三道大题,都是用课件展示:一是填空题,主要让学生进一步掌握圆柱的特征、圆柱侧面积和表面积的计算方法;二是两个图形题,分别计算圆柱的侧面积和表面积;三是解决问题,有四小道,(一)是计算通风管需要铁皮的面积(教材7页4题),(二)是计算无盖水桶的表面积(教材6页试一试),(三)是计算油桶的表面积(教材7页5题),(四)是计算5根立柱的油漆面积,并计算要用油漆多少千克,需要花多少钱。在内容上注意采取秩序渐进的原则,由易到难,这样即符合儿童的认识特点,又能兼顾大多数学生。同时也让学生明白在实际生活中计算圆柱的表面积时要具体问题具体分析,要结合实际进行计算。
3、教材结构分析教材内容可以看出,本节课包含四个知识的内容。即调查入学时的体重情况填写统计表;收集现在(二年级)的体重情况填写统计表;把入学以及现在的体重情况统一填写到同一个统计表中;整理、分析表内信息回答简单的问题。但从本地学生情况实际出发,以及条件的限制,所以本人对教材内容进行了略微的调整,将调查入学时的体重情况填写统计表改为统计本地区天气情况,也与现实生活紧密地联系在一起。同时,按照教材的逻辑性将知识整合在新课程改革的目标中。4、教学目标(1)知识目标:能运用信息的手段、新的学习方法收集整理数据完成简单的复合式统计图。(2)情感目标:能根据统计图表中的数据提出并解答简单的问题,感受生活中处处有数学,结合实例有机地进行家乡情的教育。
(1)上午9时的温度是多少?12时呢?(2)这一天的最高温度是多少?是在几时达到的?最低温度呢?(3)这一天的温差是多少?从最高温度到最低温度经过了多长时间?(4)在什么时间范围内温度在上升?在什么时间范围内温度在下降?(5)图中的A点表示的是什么?B点呢?(6)你能预测次日凌晨1时的温度吗?说说你的理由.2、议一议:骆驼被称为“沙漠之舟”,你知道关于骆驼的一些趣事吗?例:它的体温随时间的变化而发生较大的变化:白天,随沙漠温度的骤升,骆驼的体温也升高,当体温达到40℃时,骆驼开始出汗,体温也开始下降.夜间,沙漠的温度急剧降低,骆驼的体温也继续降低,大约在凌晨4时,骆驼的体温达到最低点.3、如下图,是骆驼的体温随时间变化而变化的的关系图,据图回答下列问题:
方法总结:观察表中的数据,发现其中的变化规律,然后根据其增减趋势写出自变量与因变量之间的关系式.三、板书设计1.用关系式表示变量间关系2.表格和关系式的区别与联系:表格能直接得到某些具体的对应值,但不能直接反映变量的整体变化情况;用关系式表示变量之间的关系简单明了,便于计算分析,能方便求出自变量为任意一个值时,相对应的因变量的值,但是需计算.本节课的教学内容是变量间关系的另一种表示方法,这种表示方法学生才接触到,学生感觉有点难.这节课的重点是让学生掌握用关系式与表格表示变量间的关系,难点是理解这两种表示方法的优缺点.就此问题,通过让学生对几个例子比较、讨论、总结、归纳两种方法的优点来解决,这样学生就能很好地区分这两种表示方法,并能对不同的问题选择恰当的方法
方法总结:绝对值小于1的数也可以用科学记数法表示,一般形式为a×10-n,其中1≤a<10,n为正整数.与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数前面的0的个数所决定.【类型二】 将用科学记数法表示的数还原为原数用小数表示下列各数:(1)2×10-7; (2)3.14×10-5;(3)7.08×10-3; (4)2.17×10-1.解析:小数点向左移动相应的位数即可.解:(1)2×10-7=0.0000002;(2)3.14×10-5=0.0000314;(3)7.08×10-3=0.00708; (4)2.17×10-1=0.217.方法总结:将科学记数法表示的数a×10-n还原成通常表示的数,就是把a的小数点向左移动n位所得到的数.三、板书设计用科学记数法表示绝对值小于1的数:一般地,一个小于1的正数可以表示为a×10n,其中1≤a<10,n是负整数.从本节课的教学过程来看,结合了多种教学方法,既有教师主导课堂的例题讲解,又有学生主导课堂的自主探究.课堂上学习气氛活跃,学生的学习积极性被充分调动,在拓展学生学习空间的同时,又有效地保证了课堂学习质量
解析:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根据对称轴是x=-3,求出b=6,即可得出答案;(2)根据CD∥x轴,得出点C与点D关于x=-3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵对称轴是x=-3,∴-b2=-3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.