方法总结:(1)若被开方数中含有负因数,则应先化成正因数,如(3)题.(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(因式),即化为最简二次根式(后面学到).探究点三:最简二次根式在二次根式8a,c9,a2+b2,a2中,最简二次根式共有()A.1个 B.2个C.3个 D.4个解析:8a中有因数4;c9中有分母9;a3中有因式a2.故最简二次根式只有a2+b2.故选A.方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式.三、板书设计二次根式定义形如a(a≥0)的式子有意义的条件:a≥0性质:(a)2=a(a≥0),a2=a(a≥0)最简二次根式本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系,加深学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否确认结果的合理性等等.
属于此类问题一般有以下三种情况①具体数字,此时化简的条件已暗中给定,②恒为非负值或根据题中的隐含条件,如(1)小题。③给出明确的条件,如(2)小题。第二类,需讨论后再化简。当题目中给定的条件不能判定绝对值符号内代数式值的符号时,则需讨论后化简,如(4)小题。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同号,又∵a+b=-6<0,∴a<0,b<0∴ .说明:此题中的隐含条件a<0,b<0不能忽视。否则会出现错误。例4.化简: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.这样x=6, ,x=-5,把数轴分成四段(四个区间)在这五段里分别讨论如下:当x≥6时,原式=(x-6)-(1+2x)+(x+5)=-2.当 时,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.当 时,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.当x<-5时,原式=-(x-6)+(1+2x)-(x+5)=2.说明:利用公式 ,如果绝对值符号里面的代数式的值的符号无法决定,则需要讨论。方法是:令每一个绝对值内的代数式为零,求出对应的“零点”,再用这些“零点”把数轴分成若干个区间,再在每个区间内进行化简。
内容:情景1:多媒体展示:提出问题:从二教楼到综合楼怎样走最近?情景2:如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?意图:通过情景1复习公理:两点之间线段最短;情景2的创设引入新课,激发学生探究热情.效果:从学生熟悉的生活场景引入,提出问题,学生探究热情高涨,为下一环节奠定了良好基础.第二环节:合作探究内容:学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线.让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法.
方法总结:平行线与角的大小关系、直线的位置关系是紧密联系在一起的.由两直线平行的位置关系得到两个相关角的数量关系,从而得到相应角的度数.探究点四:平行于同一条直线的两直线平行如图所示,AB∥CD.求证:∠B+∠BED+∠D=360°.解析:证明本题的关键是如何使平行线与要证的角发生联系,显然需作出辅助线,沟通已知和结论.已知AB∥CD,但没有一条直线既与AB相交,又与CD相交,所以需要作辅助线构造同位角、内错角或同旁内角,但是又要保证原有条件和结论的完整性,所以需要过点E作AB的平行线.证明:如图所示,过点E作EF∥AB,则有∠B+∠BEF=180°(两直线平行,同旁内角互补).又∵AB∥CD(已知),∴EF∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∴∠FED+∠D=180°(两直线平行,同旁内角互补).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性质),即∠B+∠BED+∠D=360°.方法总结:过一点作一条直线或线段的平行线是我们常作的辅助线.
小刘同学用10元钱购买两种不同的贺卡共8张,单价分别是1元与2元.设1元的贺卡为x张,2元的贺卡为y张,那么x,y所适合的一个方程组是()A.x+y2=10,x+y=8 B.x2+y10=8,x+2y=10C.x+y=10,x+2y=8 D.x+y=8,x+2y=10解析:根据题意可得到两个相等关系:(1)1元贺卡张数+2元贺卡张数=8(张);(2)1元贺卡钱数+2元贺卡钱数=10(元).设1元的贺卡为x张,2元的贺卡为y张,可列方程组为x+y=8,x+2y=10.故选D.方法总结:要判断哪个方程组符合题意,可从题目中找出两个相等关系,然后代入未知数,即可得到方程组,进而得到正确答案.三、板书设计二元一次方程组二元一次方程及其解的定义二元一次方程组及其解的定义列二元一次方程组通过自主探究和合作交流,建立二元一次方程的数学模型,学会逐步掌握基本的数学知识和方法,形成良好的数学思维习惯和应用意识,提高解决问题的能力,感受数学创造的乐趣,增进学好数学的信心,增加对数学较全面的体验和理解.
意图:课后作业设计包括了三个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;作业3是为了拓广知识,进行课后探究而设计,通过此题可让学生进一步认识勾股定理的前提条件.效果:学生进一步加强对本课知识的理解和掌握.教学设计反思(一)设计理念依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习.教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点.(二)突出重点、突破难点的策略为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.
目的:课后作业设计包括了两个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;拓广知识,增加学生对数学问题本质的思考而设计,通过此题可让学生进一步运用三元一次方程组解决问题.教学设计反思1.本节课的内容属于选修学习的内容,主要突出对数学兴趣浓厚、学有余力的同学进一步探究和拓展使用,在数学方法和思想方面需重点引导,通过引导,使学生明白解多元方程组的一般方法和思想,理解巩固环节需多注意多种解题方法的引导,并且比较各种解题方法之间的优劣,总结出解多元方程的基本方法.2.作为选修课,在内容上要让学生理解三元一次方程组概念的同时,要让学生理解为什么要用三元一次方程组甚至多元方程组去求解实际问题的必要性,从而掌握本堂课的基础知识.在教学的过程中,要让学生充分理解对复杂的实际问题方程中元越多,等量关系的建立就越直接;充分理解代入消元法和加减法解方程的优点和缺点,有关这一方面的题目要让学生充分讨论、交流、合作,其理解才会深刻.
探究点二:勾股定理的简单运用如图,高速公路的同侧有A,B两个村庄,它们到高速公路所在直线MN的距离分别为AA1=2km,BB1=4km,A1B1=8km.现要在高速公路上A1、B1之间设一个出口P,使A,B两个村庄到P的距离之和最短,求这个最短距离和.解析:运用“两点之间线段最短”先确定出P点在A1B1上的位置,再利用勾股定理求出AP+BP的长.解:作点B关于MN的对称点B′,连接AB′,交A1B1于P点,连BP.则AP+BP=AP+PB′=AB′,易知P点即为到点A,B距离之和最短的点.过点A作AE⊥BB′于点E,则AE=A1B1=8km,B′E=AA1+BB1=2+4=6(km).由勾股定理,得B′A2=AE2+B′E2=82+62,∴AB′=10(km).即AP+BP=AB′=10km,故出口P到A,B两村庄的最短距离和是10km.方法总结:解这类题的关键在于运用几何知识正确找到符合条件的P点的位置,会构造Rt△AB′E.三、板书设计勾股定理验证拼图法面积法简单应用通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,学会勾股定理的应用并逐步培养学生应用数学解决实际问题的能力,为后面的学习打下基础.
第三环节:课堂小结活动内容:1. 通过前面几个题,你对列方程组解决实际问题的方法和步骤掌握的怎样?2. 这里面应该注意的是什么?关键是什么?3. 通过今天的学习,你能不能解决求两个量的问题?(可以用二元一次方程组解决的。4. 列二元一次方程组解决实际问题的主要步骤是什么?说明:通过以上四个问题,学生基本上掌握了列二元一次方程组解决实际问题的方法和步骤,可启发学生说出自己的心得体会及疑问.活动意图:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.说明:还可以建议有条件的学生去读一读《孙子算经》,可以在网上查,找出自己喜欢的问题,互相出题;同位的同学还可互相编题考察对方;还可以设置"我为老师出难题"活动,每人编一道题,给老师,老师再提出:"谁来帮我解难题",以此激发学生的学习兴趣和信心。
1.会用计算器求平方根和立方根;(重点)2.运用计算器探究数字规律,提高推理能力.一、情境导入前面我们通过平方和立方运算求出一些特殊数的平方根和立方根,如4的平方根是±2,116的平方根是±14,0.064的立方根是0.4,-8的立方根是-2等.那么如何求3,189,-39,311的值呢?二、合作探究探究点一:利用计算器进行开方运算 用计算器求6+7的值.解:按键顺序为■6+7=SD,显示结果为:9.449489743.方法总结:当被开方数不是一个数时,输入时一定要按键.解本题时常出现的错误是:■6+7=SD,错的原因是被开方数是6,而不是6与7的和,这样在输入时,对“6+7”进行开方,使得计算的是6+7而不是6+7,从而导致错误.K探究点二:利用科学计算器比较数的大小利用计算器,比较下列各组数的大小:(1)2,35;(2)5+12,15+2.解:(1)按键顺序:■2=SD,显示结果为1.414213562.按键顺序:SHIFT■5=,显示结果为1.709975947.所以2<35.
1.关于二次根式的概念,要注意以下几点:(1)从形式上看,二次根式是以根号“ ”表示的代数式,这里的开方运算是最后一步运算。如 , 等不是二次根式,而是含有二次根式的代数式或二次根式的运算;(2)当一个二次根式前面乘有一个有理数或有理式(整式或分式)时,虽然最后运算不是开方而是乘法,但为了方便起见,我们把它看作一个整体仍叫做二次根式,而前面与其相乘的有理数或有理式就叫做二次根式的系数;(3)二次根式的被开方数,可以是某个确定的非负实数,也可以是某个代数式表示的数,但其中所含字母的取值必须使得该代数式的值为非负实数;(4)像“ , ”等虽然可以进行开方运算,但它们仍属于二次根式。2.二次根式的主要性质(1) ; (2) ; (3) ;(4)积的算术平方根的性质: ;(5)商的算术平方根的性质: ;
探究点二:三角形内角和定理的推论2如图,P是△ABC内的一点,求证:∠BPC>∠A.解析:由题意无法直接得出∠BPC>∠A,延长BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得证.证明:延长BP交AC于D,∵∠BPC是△ABC的外角(外角定义),∴∠BPC>∠PDC(三角形的一个外角大于任何一个和它不相邻的内角).同理可证:∠PDC>∠A,∴∠BPC>∠A.方法总结:利用推论2证明角的大小时,两个角应是同一个三角形的内角和外角.若不是,就需借助中间量转化求证.三、板书设计三角形的外角外角:三角形的一边与另一边的延长线所组成的 角,叫做三角形的外角推论1:三角形的一个外角等于和它不相邻的两 个内角的和推论2:三角形的一个外角大于任何一个和它不 相邻的内角利用已经学过的知识来推导出新的定理以及运用新的定理解决相关问题,进一步熟悉和掌握证明的步骤、格式、方法、技巧.进一步培养学生的逻辑思维能力和推理能力,特别是培养有条理的想象和探索能力,从而做到强化基础,激发学习兴趣.
方法总结:利用三角形三边的数量关系来判定直角三角形,从而推出两线的垂直关系.探究点二:勾股数下列几组数中是勾股数的是________(填序号).①32,42,52;②9,40,41;③13,14,15;④0.9,1.2,1.5.解析:第①组不符合勾股数的定义,不是勾股数;第③④组不是正整数,不是勾股数;只有第②组的9,40,41是勾股数.故填②.方法总结:判断勾股数的方法:必须满足两个条件:一要符合等式a2+b2=c2;二要都是正整数.三、板书设计勾股定理的逆定理: 如果一个三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.勾股数:满足a2+b2=c2的三个正整数,称为勾股数.经历一般规律的探索过程,发展学生的抽象思维能力、归纳能力.体验生活中数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.
第一,说教材。《小数点搬家》是选自九年义务教育六年制小学数学北师大版四年级下册第三单元第43、44页的内容。本课是在学生已经认识了小数,并理解小数乘法的意义和会计算简单的小数乘整数的基础上进行教学的。教材编排从设疑引趣出发,使学生发现小数点的移动会引起小数大小的变化规律,并通过新奇有趣、层层提高的练习形式让学生掌握并灵活运用知识,为以后学习小数的乘除法作好铺垫。根据大纲的要求和教材的特点,结合四年级学生的实际情况,本节课我确定如下的教学目标:知识目标:结合实际情景,发现小数点的移动引起小数大小变化的规律。能力目标:通过各种实践活动,能运用所发现规律计算相关的小数乘除法。情感目标:在玩游戏探究新知的活动中,激发学生学习数学的兴趣,培养合作意识和应用意识。
(三)练习巩固练习是掌握知识、形成技能、发展思维的重要手段,根据不同层次学生的不同需求,我设计了三个层次的练习第一层次:基础训练。设计了2个题目,引用1、2题,让学生充分体会小数产生的必要性,感受数学来源于又应用于生活。第二层次:应用练习。2题,1根据信息表示出回形针长多少厘米,和宝宝不同时期的身高和体重。此时需要学生主意单位,如,以厘米为单位,整厘米为单位要写在整数部分,不足1厘米的写在小数部分。2引用4题,此两题的目的是让学生体会可以用小数将较小单位的量表示为较大单位的量。第三层次:拓展练习。0.3时是多少分?让学有余力的学生得到进一步的提高我将会引导学生思考:这节课我们学习了什么本领?我们是如何学的?先学生自行小结,再师生共同回顾以上个问题,这样既可以对本节课所学知识的进行回顾与整理,又可以培养学生的概括表达能力。
说教材:北师大版数学一年级下册第三单元“生活中的数”第五课时小小养殖场。本单元是结合生活实际,理解多一些、多得多、少一些、少得多的含义。使学生能在具体情境中把握数的相对大小关系,发展学生的数感。说教学目标:1.结合生活实际,理解多一些、多得多、少一些、少得多的含义。2.使学生能在具体情境中把握数的相对大小关系,发展学生的数感。说重点、难点结合实践经验,理解“多一些,多得多,少一些,少得多,差不多”的含义说教法与学法:本节课要让学生在已有经验的基础上让学生获得体验和理解。结合一年级学生活泼好动、求知欲强和本节课学习素材的特点,实现转变教学方式和学生的学习方式,体现学生为主体,教师为主导的教学原则,我设计了以下的教法和学法,既重视选择灵活的教法,又注重对学生学法的指导。
(1)喜欢哪种动物的人最多?(2)一共有多少人投票?(3)下面哪一组和上图所表示的数据完全一样?2、发货的工厂给我们推荐了几款比较受欢迎的鞋子,这里有一些调查的数据,你准备采用什么方法来决定这几种款式要进的数量?做一做!(先独立完成再与同伴交流自己的方法)(设计理念:通过本节课创设的情景,很自然地引出一个习题和课下作业,并不是很生硬地为了练习而练习,而是让学生感受到现实存在的问题需要利用所学的知识去解决,这样不仅能巩固所学知识,还能让学生再次体会统计的必要性。)说板书设计:板书设计在教学中起到了画龙点睛的作用,因此,我设计概括点拨式的板书来归纳本节课的中心内容,这样设计层次分明、重点突出,有利于巩固学生对新知识的掌握。
第三个环节——巩固应用按从易到难的原则,设计了4道检测题,引导学生综合运用所学的知识和技能,提高解决问题的能力,并从中体验解决问题的乐趣。第四个环节——全课小结首先学生谈收获,教师进行恰当评价。此环节通过师生互动、生生互动,经历一次再学习、再巩固的过程。教学反思:一、还应展开对字母表示数和数量关系的具体意义的交流性阐释。虽然在教学中我十分注重让学生在生活情境中轻松地抽象数学模型和理解新知,但是由于过分关注教学进度,学生没有时间结合具体情境全面地表述含有字母的式子所表示的意义。二、对学生的建模能力培养还应加强训练。每一次让学生表述字母和含有字母的式子表示什么意思时,学生还没有来得及充分思考,我总是忍不住着急地引导。其实,如果放手让学生交流、讨论,让他们自己进行抽象概括,他们还是能解决的。
教学难点:让学生经历比较简单分数大小的过程,并能解决简单的实际问题.设计本课时,我注重为学生创设恰当的参与,实践探究必备的空间,让学生在主动参与学习活动的过程中,引导学生有效思考,撑握简单分数大小比较的方法,活动重在让学生经历探索与发现的过程,使其在课堂中既有获取知识,能力也得到了培养。本科课堂教学我从学生感兴趣的游戏和故事两方面入手:游戏对于孩子一直是感兴趣的话题,同分母分数比较大小在了解分数的意义之后,对于学生学习这一部分来说是比较简单的,如何提高学生的学习兴趣,我脱离书本这一载体设计了莫分数比大小这一游戏,在课堂上学生自主地参与活动,通过让学生动手做、动脑想:你想摸到几颗棋子?为什么?、动口说:比这个分数大的分数还有?比这个分数小的分数还有?,使学生在活动中发现问题分母相同的分数如何比较大小?寻求规律分母相同的分数比较大小的方法。
一、说教材今天我说课的题目是《小兔请客》,《小兔请客》选自北师大数学教材一年级下册第五单元《加与减》(二)的第一个内容,这节课是在学生学习了20以内加减法和100以内数的认识的基础上安排的整十数加减整十数的一节课,本节课从学生感兴趣的小兔请客这一情境中抽象出加减法算式,体会加减法的意义,学习掌握计算的方法理解算理。这节课为学生继续学习加减法计算起着重要的铺垫作用。二、说教学目标1、让学生在具体的情境中经历提出问题、解决问题的过程,进一步体会加减法的意义。2、探索并掌握整十数加、减整十数的计算方法,体会算法的多样性。3、认识加减算式各部分的名称。4、激发学生的学习兴趣。三、说重点、难点重点:计算是低年级教学的重要内容,探索并掌握整十数加减整十数的计算方法、理解算理则是本节课的重点。