20XX.01-20XX.01 XXX软件有限公司 新媒体运营 u 主要包括日常咨询、广告版位管理、制作修改排期、完成合同流程、协调广告发布以及完成监测报告、数据的筛选与整合等工作,以满足客户需求。u 负责创意视频策划、脚本撰写、拍摄制作、剪辑、后期发布等工作。u 负责视频平台的用户增长、导流,根据数据持续优化账号内容和运营。u 跟进视频发布后的效果,分析数据形成结论,持续优化视频的输出。u 负责新媒体渠道的搭建与日常运营,完成服务号的规划与排期,分析用户的喜好内容方向,对每次的推送数据进行汇总和分析,不断更新推送模型。并定期策划活动,使用裂变工具为服务号增粉。
人的一生最难得是拥有几个终生难忘的朋友,不需要很多,只是几个。小猪威尔伯就有一个至死都无法忘记的朋友——蜘蛛夏洛。为了威尔伯的生命,夏洛沉思着,忙碌着,为了能够确保威尔伯永远捕会被做成熏肉火腿,夏洛陪着威尔伯前往大赛,在蜘蛛网上编下“谦卑”的字样,威尔伯最终夺冠,而夏洛因为体力不支,在产下514个卵后,死了。它在死前轻轻地对威尔伯说了一句;“再见。”
线描画是一种绘画的练习,又是一种思维的训练。它是指用线条的变化来描绘对象及其形体结构的绘画方式,是我国传统绘画的重要表现形式之一,具有装饰、美化、组合之意。线描画的装饰性极强,在充分表达了儿童的童趣、灵性和丰富的想象力之外,还体现了线描画的黑白分布的巧妙配置及线条变化所形成粗细曲直的节奏与韵律之美。线描画是一种利用最少的作画工具就能随时随地进行的绘画活动,在这堂课里两支粗细不同的勾线笔和一张四开的白纸就是幼儿绘画的全部工具。我设计的线描画《小蜘蛛织网》,是在孩子对线描画中的点、线、面、形有一定认识的基础上进行的教学活动,整个活动以小蜘蛛织网为主线,让孩子在认识线条的基础上,感受线条有长短、粗细、曲直之分,然后欣赏、学习线条组合、变化,最后为了培养孩子之间的合作能力,我请他们四人一组进行合作创作。
合伙人:____________姓名________,性别____,年龄________,住址________________。(其他合伙人按上列项目顺序填写)第一条合伙宗旨第二条合伙经营项目和范围第三条合伙期限合伙期限为________年,自________年____月____日起,至________年________日止。第四条出资额、方式、期限1.合伙人____________(姓名)以____________方式出资,计人民币____________元。(其他合伙人同上顺序列出)2.各合伙人的出资,于____________年________月________日以前交齐,逾期不交或未交齐的,应对应交未交金额数计付银行利息并赔偿由此造成的损失。3.本合伙出资共计人民币____________元。合伙期间各合伙人的出资 为共有财产,不得随意请求分割,合伙终止后,各合伙人的出资仍为个人所有,至时予以返还。第五条盈余分配与债务承担1.盈余分配,以________为依据,按比例分配。2.债务承担:合伙债务先由合伙财产偿还,合伙财产不足清偿时,以各合伙人的____________为据,按比例承担。第六条入伙、退伙,出资的转让1.入伙:①需承认本合同;②需经全体合伙人同意;③执行合同规定的权利义务。2.退伙:①需有正当理由方可退伙;②不得在合伙不利时退伙;③退伙需提前________月告知其他合伙人并经全体合伙人同意;④退伙后以退伙时的财产状况进行结算,不论何种方式出资,均以金钱结算;⑤未经合同人同意而自行退伙给合伙造成损失的,应进行赔偿。
2009年9月,武汉一位母亲为了劝说长期沉迷于网吧的儿子,以跳江寻死相谏。马强原来在一所小学读书,学习成绩优秀,身体健康,爱打乒乓球。自从玩上电脑游戏后,马强无心学习,经常一连几天泡在网吧里。有一次马强连续几天玩电脑游戏,眼睛突然看不见了,医生说是“暴盲”。眼睛治好后,马强继续经常长时间泡在网吧,后来发展到没有钱玩电脑游戏就去偷盗,并参与团伙抢劫,直到最后被抓住。(2)主持人展示一组触目惊心的数据。甲:让我们再来看看这样一组数据。(课件出示)据最新统计,我国网民超过一亿,其中青少年网民占80%,青少年上网大多以玩游戏和聊天为主,网络成瘾、网络受骗、网络犯罪等问题日益突出。我国网络成瘾的青少年高达250万人,14岁到24岁是网瘾最高发的时期,占整个网瘾青少年的90%。因为上网,全国的青少年犯罪率以每年10%的速度增长。
5.怎样才能做到既运用好网络,又不致于沉迷其中呢?现在就让我们一起去儿童健康上网中心看一看,一定会对你有所帮助的。(二)剖析自我,坦露心声导语:我们这里来了一位叫小明的朋友,他有烦恼向我们倾诉,你们听。1.课件中的小明诉说自己在上网时常遇到不适合我们看的内容,感到很烦恼,希望大家给他出出主意。(同学们各抒己见)2.你们在与网络相处的过程中一定也会遇到不少麻烦,能说给大家听听吗?3.看到同学们如此真诚,还有几位网迷也想同大家认识,他们正在会友室等着大家。注意:边听他们的介绍,边问问自己:我的上网情况和谁最相似?欢迎大家说真话。(点击课件进入会友室)有六位小网迷逐一介绍:
(二)团队服务质量还有待提高。每一个网格都承载着一个村所有的工作,包括计生、社保、综治等多项工作内容,这就要求网格员要具备多方面、多层次的知识,熟悉掌握各类政策法规,目前来看还有待加强。(三)村民小组长工作积极性还需调动。村民小组长作为网格内的重要成员,在社会管理中发挥着举足轻重的作用,虽然他们热心于村委会工作,但其主动性还有待提升,作用的发挥和调动还需要一定的资金和物质支持。(四)房屋空置率高,人员重复率高。黄羊滩农场实际情况特殊,人员流动性大,房屋空置率高,有些人常年不住,有些人夏天住,冬天不住,给网格员入户摸排信息造成困难。各连队内居住的居民,夏天在连队居住种地,冬天到金滩家园小区内居住,造成了人员上的数据重复。四、下一步工作计划
1、认真读课文,边读边想课文每个自然段都写了什么,给课文划分段落。2、学生交流段落划分,说明分段理由。3、教师对照板书进行小结:这篇课文思路特别明晰,作者开门见山提出自己的观点,明确指出“真理诞生于一百个问号之后”这句话本身就是“真理”,然后概括地指出在千百年来的科学技术发展史上,那些定理、定律、学说都是在发现者、创造者解答了“一百个问号之后”才获得的,由此引出科学发展史上的三个有代表性的确凿事例,之后对三个典型事例作结,强调这三个事例“都是很平常的事情”,却从中发现了真理,最后指出科学发现的“偶然机遇”只能给有准备的人,而不会给任何一个懒汉。
一、教学理论依据及设计理念以新课程理念和新课标为指针,依据建构主义理论、学科探究理论和多元智力理论,采用探究式的教学模式来组织实施本节课的教学。学生成为课堂的主体和知识的主动构建者。通过创设多种情境,让学生积极参与、体验、感悟,主动获得新知,并逐步提高学生发现问题、分析问题和解决问题的能力。教师从课堂的主宰变为课堂的主导,是学生学习活动的组织者、引导者和合作者。教学过程是一个发散式的学生自主学习的过程。采用自主、合作、探究式的教学方式,让学生有多元选择,激发他们的潜能,发展他们的个性。二、教材分析1.教材的地位与作用:本框题是《生活与哲学》第二单元《探索世界与追求真理》第六课“求索真理的历程”的第二节内容。本单元的核心问题是如何看待我们周围的世界,该问题也是《生活与哲学》整本书的核心问题之一。
5. 作业: 作业我同样选取不同题型的五个计算题,目的是想查看学生学的效果如何,是否对哪类题型还留有疑问。 6. 自我评价: 这堂课我觉得满意的,是能够利用短暂的45分钟把要学的知识穿插在学与练当中,充分地利用了课堂有限的时间,并且能让学生边学边练,及时巩固。 当然这堂课也有很多不足之处,我觉得自己对于课堂上学生做练习时出现的一些小问题处理还没有能够处理得很好,我应该吸取经验教训,再以后的教学中加以改进。 另外对于多个有理数相乘时的符号问题,我觉得自己归纳得还不是很到位,我想解决的办法是在以后的练习中再做些补充,让学生加深理解。从中我也得到一个教训,再以后的教学工作中,我还应该多学习教学方法,多思考如何归纳知识点,才能更好地帮学生形成一个系统的知识系统!
在答案的汇总过程中,要肯定学生的探索,爱护学生的学习兴趣和探索欲.让学生作课堂的主人,陈述自己的结果.对学生的不完整或不准确回答,教师适当延迟评价;要鼓励学生创造性思维,教师要及时抓住学生智慧的火花的闪现,这一瞬间的心理激励,是培养学生创造力、充分挖掘潜能的有效途径.预先设想学生思路,可能从以下方面分类归纳,探索规律:① 从加数的不同符号情况(可遇见情况:正数+正数;负数+负数;正数+负数;数+0)② 从加数的不同数值情况(加数为整数;加数为小数)③ 从有理数加法法则的分类(同号两数相加;异号两数相加;同0相加)④ 从向量的迭加性方面(加数的绝对值相加;加数的绝对值相减)⑤ 从和的符号确定方面(同号两数相加符号的确定;异号两数相加符号的确定)教学中要避免课堂热热闹闹,却陷入数学教学的浅薄与贫乏.
一、设计思想通过本节教学,不但要使学生认识掌握匀变速直线运动的规律,而且要通过对这问题的研究,使学生了解和体会物理学研究问题的一个方法,图象、公式、以及处理实验数据的方法等。这一点可能对学生更为重要,要通过学习过程使学生有所体会。本节在内容的安排顺序上,既注意了科学系统,又注意学生的认识规律。讲解问题从实际出发,尽量用上一节的实验测量数据。运用图象这种数学工具,相对强调了图象的作用和要求。这是与以前教材不同的。在现代生产、生活中,图象的运用随处可见,无论学生将来从事何种工作,掌握最基本的应用图象的知识,都是必须的。学生在初学时往往将数学和物理分割开来,不习惯或不会将已学过的数学工具用于物理当中。在教学中应多在这方面引导学生。本节就是一个较好的机会,将图象及其物理意义联系起来。
三、作出速度-时间图像(v-t图像)1、确定运动规律最好办法是作v-t图像,这样能更好地显现物体的运动规律。2、x y x1 x2 y2 y1 0讨论如何在本次实验中描点、连线。(以时间t为横轴,速度v为纵轴,建立坐标系,选择合适的标度,把刚才所填表格中的各点在速度-时间坐标系中描出。注意观察和思考你所描画的这些点的分布规律,你会发现这些点大致落在同一条直线上,所以不能用折线连接,而用一根直线连接,还要注意连线两侧的点数要大致相同。)3、若出现了个别明显偏离绝大部分点所在直线的点,该如何处理?(对于个别明显偏离绝大部分点所在直线的点,我们可以认为是测量误差过大、是测量中出现差错所致,将它视为无效点,但是在图像当中仍应该保留,因为我们要尊重实验事实,这毕竟是我们的第一手资料,是原始数据。)4、怎样根据所画的v-t图像求加速度?(从所画的图像中取两个点,找到它们的纵、横坐标(t1,v1)、(t2,v2),然后代入公式,求得加速度,也就是直线的斜率。在平面直角坐标系中,直线的斜率
3、若出现了个别明显偏离绝大部分点所在直线的点,该如何处理?(对于个别明显偏离绝大部分点所在直线的点,我们可以认为是测量误差过大、是测量中出现差错所致,将它视为无效点,但是在图像当中仍应该保留,因为我们要尊重实验事实,这毕竟是我们的第一手资料,是原始数据。)4、怎样根据所画的v-t图像求加速度?(从所画的图像中取两个点,找到它们的纵、横坐标(t1,v1)、(t2,v2),然后代入公式,求得加速度,也就是直线的斜率。在平面直角坐标系中,直线的斜率四、实践与拓展例1、在探究小车速度随时间变化规律的实验中,得到一条记录小车运动情况的纸带,如图所示。图中A、B、C、D、E为相邻的计数点,相邻计数点的时间间隔为T=0.1s。⑴根据纸带上的数据,计算B、C、D各点的数据,填入表中。
一、设计思想通过本节教学,不但要使学生认识掌握匀变速直线运动的规律,而且要通过对这问题的研究,使学生了解和体会物理学研究问题的一个方法,图象、公式、以及处理实验数据的方法等。这一点可能对学生更为重要,要通过学习过程使学生有所体会。本节在内容的安排顺序上,既注意了科学系统,又注意学生的认识规律。讲解问题从实际出发,尽量用上一节的实验测量数据。运用图象这种数学工具,相对强调了图象的作用和要求。这是与以前教材不同的。在现代生产、生活中,图象的运用随处可见,无论学生将来从事何种工作,掌握最基本的应用图象的知识,都是必须的。学生在初学时往往将数学和物理分割开来,不习惯或不会将已学过的数学工具用于物理当中。在教学中应多在这方面引导学生。本节就是一个较好的机会,将图象及其物理意义联系起来。
(三)合作交流能力提升教师:刚才我们通过实验了解了小车的速度是怎样随时间变化的,但实验中有一定的误差,请同学们讨论并说出可能存在哪些误差,造成误差的原因是什么?(每个实验小组的同学之间进行热烈的讨论)学生:测量出现误差。因为点间距离太小,测量长度时容易产生误差。教师:如何减小这个误差呢?学生:如果测量较长的距离,误差应该小一些。教师:应该采取什么办法?学生:应该取几个点之间的距离作为一个测量长度。教师:好,这就是常用的取“计数点”的方法。我们应该在纸带上每隔几个计时点取作一个计数点,进行编号。分别标为:0、1、2、3……,测各计数点到“0”的距离。以减小测量误差。教师:还有补充吗?学生1:我在坐标系中描点画的图象只集中在坐标原定附近,两条图象没有明显的分开。学生2:描出的几个点不严格的分布在一条直线上,还能画直线吗?
设计意图:几道例题及练习题,其中例1小车由静止启动开始行驶,以加速度 做匀加速运动,求2s后的速度大小?进而变式到:小车遇到红灯刹车……,充分体现了“从生活到物理,从物理到社会”的物理教学理念;例题及练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在物理上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。(6) 小结归纳,拓展深化我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的知识、方法、体验是那个方面进行归纳,我设计了这么三个问题:① 通过本节课的学习,你学会了哪些知识;② 通过本节课的学习,你最大的体验是什么;③ 通过本节课的学习,你掌握了哪些学习物理的方法?
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.