导语:演讲是演讲者就人们普遍关注的某种有意义的事物或问题,通过口头语言面对一定场合的听众,直接发表意见的一种社会活动。以下是小编为您搜集整理提供到的范文,希望对您有所帮助!各位老师,各位同学:大家早上好!今天我国旗下讲话的主题是“感恩”,本周四就是西方的感恩节,其实,感恩不仅仅在西方,在中国感恩自古有之。“谁言寸草心,报得三春晖”等等,说的就是是感恩。有这样一个真实的故事:一位生活在穷乡僻壤、出身贫寒的农家子弟通过自己的刻苦努力和顽强拼搏,终于考取了当地最好的重点中学——县一中,父母为此流下了激动和高兴的泪水。孩子进入县一中读书后,因为离家近百里,于是在学校寄宿。这所学校因为是县城唯一的重点中学,所以县城许多当官及有钱人家的孩子几乎都送到这里来读书,也使得校园攀比之风盛行,渐渐地,这位农民的孩子因为家境贫寒感到很自卑,总觉得自己在别人面前抬不起头,对那些有钱的同学特别羡慕。有一次,年迈的母亲在一个寒冷的冬天,为了节省几元钱的车费给孩子送冬天的衣服,硬是赶了近一天的路走到学校给孩子送冬天的衣服和食物。当疲惫不堪、穿着破旧、日见苍老的母亲敲开教室的门时,老师问她找谁,她说了自己孩子的姓名,然而,当老师问这位孩子她是你什么人时,这位孩子居然像犯了错误似的,脸涨得通红,小声地说她是我家的一个亲戚。当这句话传到站在门外把他含辛茹苦养育大的老母亲耳里时,老母亲愣住了,眼里涌出了泪花,她一句话也没说,把东西交给了老师,转身走进凛冽的寒风里。
导语:演讲稿像议论文一样论点鲜明、逻辑性强、富有特点,但它又不是一般的议论文。它是一种带有宣传性和鼓动性的应用文体,经常使用各种修辞手法和艺术手法,具有较强的感染力。以下是小编为您搜集整理提供到的范文,希望对您有所帮助,欢迎阅读参考学习!老师们,同学们,大家好!我演讲的题目是《今天,奋斗的起点》。昨天带着回忆默默地远去了,今天携着希望悄悄地来临了,而明天又闪烁着光辉等待着我们。有的人沉浸在回忆中,他们依恋昨天;有的人只沉醉在梦幻中,他们盼望明天。这两种人都忘记了最应当珍视的是宝贵的今天。今天,不就是短短的一天吗?我从明天开始勤奋学习。今天不就是区区的二十四小时吗?我从明天开始认真工作。今天不就是三百六十五分之一吗?我从明天开始为共-产主义事业而奋斗。有些人这样想,也是这样做的。朋友,我绝不怀疑你的真诚,但为什么把要做的事放到明天,一切从明天开始呢?日月匆匆,终于等到了明天,但明天又变成了今天,而每个今天之后都有无穷无尽的明天。那么,你的决心、你的理想,哪一天才能变为行动、变为现实呢?莎士比亚说:抛弃时间的人,时间也会抛弃他。我说:抛弃今天的人,今天也会抛弃他;而被今天抛弃的人,他也就没有了明天。
导语:演讲稿又叫演说词,它是在大会上或其他公开场合发表个人的观点、见解和主张的文稿。演讲稿的好坏直接决闻一多先生定了演讲的成功与失败。 以下是为您搜集整理提供到的范文,希望对您有所帮助,欢迎阅读参考学习!尊敬的各位领导、老师、亲爱的同学们:大家早上好,我很高兴成为**小学新学期国旗下讲话的学生代表。时光如梭,眨眼间,两个月的假期已经结束。今天,伴着雄壮的义勇军进行曲,鲜艳的五星红旗再次在我们的眼前冉冉升起——一个充满希望的新学年开始了。 如今我们的校园旧貌换新颜,地面更加整洁,花草更加鲜艳。看新添的广播站,新挂的标语标牌,在这样的学校读书,我们感到衷的自豪。新的学年开始了,新学期、新气象、新起点、新征程、新希望、新崛起。全体师生将以高昂的干劲、踏实的作风和崭新的思路去做好每一项工作。同学们, 新学期孕育新的希望,新学期自然有新的要求。在新的学期里,我们全体同学有信心、有决心,按照《中小学生日常行为规范》《中小学生守则》做自立自强的好少年。让我们学会创造、学会做人、学会合作,为成为社会主义现代化建设合格接班人而努力学习。最后,祝老师们在新学年里工作顺利、精神愉快!祝同学们学习进步、健康成长! 谢谢大家。
同学们,你喜欢自己吗?你对自己满意吗?你很羡慕某些人,甚至愿意自己也成为他吗?如果你对自己有疑惑,那么我来告诉你:就像每一片叶子都有它独特的形状,每一朵花儿都有它独特的香味,我们每一个人都是世上独一无二的个体,在这个世界上,没有两个人是完全一样的。我们每一个人的存在,都有自己的价值与意义,别人可以比我好,也可以比我差,但没有人可以取代我。美国少年天使肯尼,一出生就因为身体畸形截掉双腿,后来又发现切口的根部被癌细胞侵入,只好把腰部以下的身体全部切除。但是,肯尼并没有向病魔低头,他在家人的帮助下向自己的生命挑战,拼命练习生存技能,使得自己日渐独立,能跟常人一样上学,甚至还学会了溜滑板、溜冰。肯尼的生命是美丽的、动人的。有时候我们以为遭遇到的危机使我们走投无路了,却在事后发现这是生命的转机。美丽的生命在于勇于更新,且愿意努力学习。化蛹为蝶,才能使生命焕然一新。人的一生也需要蜕变才能成长。每一次蜕变都回带你走进人生的新领域、新境界,使你获得新的感受、新的惊喜。
国旗下讲话稿小学:凝望升旗老师们,同学们:大家好!我今天国旗下讲话的题目是《凝望升旗》。蓝天下,迎着初生的晨曦,我们举行这庄严而又隆重的升国旗仪式。我们仰望着国旗冉冉升起,耳畔回荡着气壮山河的国歌,我们为这一庄严的时刻而自豪,我们因肃然于国旗前而激动。我们是新世纪的希望。浴血奋战、硝烟弥漫的战火已离我们久远;历史的恩怨,国危的呼号也融进了历史,但我们不能忘记历史,不能忘记“九一八”。国旗,这新中国的象征;国歌,这一中国人心中最激越的旋律,穿越时空,延续着我们中华民族的伟大传统,凝聚着新中国的豪情壮志,昭日月,耀千秋。国旗的光辉伴随着我们的成长,照亮了我们前进的道路;国歌的旋律激励我们继承先辈的伟大事业,不懈奋斗。
各位老师,亲爱的同学们,大家好!紧张的一个学期接近尾声了,我们又迎来了盼望已久的暑假。怎样过好这个长假呢?我们有太多的设想与计划,我们有太多的欣喜与希望。可是,这一切,都是建立在安全的基础上的。因此在假期中,我们每一个同学都必须提高安全意识,学会自我保护。今天,我在这里要再三重申和提醒大家:安全是生命之水,文明是幸福之源!假期一定注意安全,希望大家不仅要记在脑子里,更要落实到行动上。希望同学们从以下几个方面做起:1、防溺水事故:溺水事故是夏季在安全方面存在的隐患,因为每年在这个季节里我们的周围都会发生许许多多令人惨痛的事故和教训,并且这些教训往往是以生命的失去而作为代价的;而对于一个家庭来讲,孩子生命的失去往往就意味着一个幸福家庭的破裂甚至毁灭。今天,我再次重申,绝对禁止到危险水域玩水。由于天气炎热,这个问题最容易出现,请同学们务必引起注意,坚决做到不在水库或深水区玩耍;不准与同学结伴到无安全设施、不熟悉,无救护人员的水域游泳。游泳时一定要有家长的陪同。
写作背景这首诗写于普希金被沙皇流放的日子里,是以赠诗的形式写在他的邻居奥希泊娃的女儿叶甫勃拉克西亚·尼古拉耶夫娜·伏里夫纪念册上的。那里俄国革命正如火如荼,诗人却被迫与世隔绝。在这样的处境下,诗人却没有丧失希望与斗志,他热爱生活,执着地追求理想,相信光明必来,正义必胜。(三)、问题探究1、“假如生活欺骗了你”指的是什么?指在生活中因遭遇艰难困苦甚至不幸而身处逆境。作者写这首诗时正被流放,是自己真实生活的写照。2、诗人在诗中阐明了怎样的人生态度?请结合你感受最深的诗句说说你曾有过的体验。诗中阐明了这样一种积极乐观的人生态度:当生活欺骗了你时,不要悲伤,不要心急;在苦恼的时候要善于忍耐,一切都会过去,我们一定要永葆积极乐观的心态;生活中不可能没有痛苦与悲伤,欢乐不会永远被忧伤所掩盖,快乐的日子终会到来。
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 8.4 圆(二) *创设情境 兴趣导入 【知识回顾】 我们知道,平面内直线与圆的位置关系有三种(如图8-21): (1)相离:无交点; (2)相切:仅有一个交点; (3)相交:有两个交点. 并且知道,直线与圆的位置关系,可以由圆心到直线的距离d与半径r的关系来判别(如图8-22): (1):直线与圆相离; (2):直线与圆相切; (3):直线与圆相交. 介绍 讲解 说明 质疑 引导 分析 了解 思考 思考 带领 学生 分析 启发 学生思考 0 15*动脑思考 探索新知 【新知识】 设圆的标准方程为 , 则圆心C(a,b)到直线的距离为 . 比较d与r的大小,就可以判断直线与圆的位置关系. 讲解 说明 引领 分析 思考 理解 带领 学生 分析 30*巩固知识 典型例题 【知识巩固】 例6 判断下列各直线与圆的位置关系: ⑴直线, 圆; ⑵直线,圆. 解 ⑴ 由方程知,圆C的半径,圆心为. 圆心C到直线的距离为 , 由于,故直线与圆相交. ⑵ 将方程化成圆的标准方程,得 . 因此,圆心为,半径.圆心C到直线的距离为 , 即由于,所以直线与圆相交. 【想一想】 你是否可以找到判断直线与圆的位置关系的其他方法? *例7 过点作圆的切线,试求切线方程. 分析 求切线方程的关键是求出切线的斜率.可以利用原点到切线的距离等于半径的条件来确定. 解 设所求切线的斜率为,则切线方程为 , 即 . 圆的标准方程为 , 所以圆心,半径. 图8-23 圆心到切线的距离为 , 由于圆心到切线的距离与半径相等,所以 , 解得 . 故所求切线方程(如图8-23)为 , 即 或. 说明 例题7中所使用的方法是待定系数法,在利用代数方法研究几何问题中有着广泛的应用. 【想一想】 能否利用“切线垂直于过切点的半径”的几何性质求出切线方程? 说明 强调 引领 讲解 说明 引领 讲解 说明 观察 思考 主动 求解 思考 主动 求解 通过例题进一步领会 注意 观察 学生 是否 理解 知识 点 50
一、自觉依法纳税(二)我国税收“取之于民,用之于民” 1、税收的含义与基本特征 【学生活动】学生思考后回答。 【教师活动】税收是国家为实现其职能,凭借其政治权力,依法无偿地取得财政收入的基本形式。 【教师活动】税收具有强制性、无偿性和固定性的基本特征。[1]强制性:不管你愿意还是不愿意,都必须交税。[2]无偿性:交了税,没有补偿,更不会返还。[3]固定性:征税是有标准的,不是无止境的,按标准收到一定数量即算完成纳税。 2、税收的性质 【教师活动】展示多媒体图片,观察税收性质是什么? 【学生活动】分析图片,税收的性质。 【教师活动】每个人都与税收紧密地联系在一起,我们天天享受到的公共物品,无不有赖于税收。接受教育要有学校,看病要有医院,出行要有道路,保障国家安全要有国防,防洪、发电要有水利工程,这些都要依靠国家的税收来为公众提供公共服务。 【教师活动】播放国家免费为新冠肺炎患者治疗的视频。 【教师活动】劳动人民是税收的最终受益者,我国的税收是取之于民、用之于民的新型税收。
教学目标:1.知道二次函数与一元二次方程的联系,提高综合解决问题的能力.2.会求抛物线与坐标轴交点坐标,会结合函数图象求方程的根.教学重点:二次函数与一元二次方程的联系.预设难点:用二次函数与一元二次方程的关系综合解题.☆ 预习导航 ☆一、链接:1.画一次函数y=2x-3的图象并回答下列问题(1)求直线y=2x-3与x轴的交点坐标; (2)解方程2x-3=0(3)说出直线y=2x-3与x轴交点的横坐标和方程根的关系2.不解方程3x2-2x+4=0,此方程有 个根。二、导读画二次函数y= x2-5x+4的图象1.观察图象,抛物线与x轴的交点坐标是什么?2.求一元二次方程x2-5x+4=0的解。3.抛物线与x轴交点的横坐标与一元二次方程x2-5x+4=0的解有什么关系?(3)一元二次方程ax2+bx+c=0是二次函数y=ax2+bx+c当函数值y=0时的特殊情况.二次函数y=ax2+bx+c的图象与x轴交点的横坐标与一元二次方程ax2+bx+c=0的根有什么关系?
解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2.∵积不含x2项,也不含x项,∴-2a+3b=0,-2b+3=0,解得b=32,a=94,∴系数a、b的值分别是94,32.方法总结:解决此类问题首先要利用多项式乘法法则计算出展开式,合并同类项后,再根据不含某一项,可得这一项系数等于零,再列出方程解答.三、板书设计1.多项式与多项式的乘法法则:多项式和多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.2.多项式与多项式乘法的应用本节知识的综合性较强,要求学生熟练掌握前面所学的单项式与单项式相乘及单项式与多项式相乘的知识,同时为了让学生理解并掌握多项式与多项式相乘的法则,教学中一定要精讲精练,让学生从练习中再次体会法则的内容,为以后的学习奠定基础
光的速度约为3×108米/秒,一颗人造地球卫星的速度是8×103米/秒,则光的速度是这颗人造地球卫星速度的多少倍?解析:要求光速是人造地球卫星的速度的倍数,用光速除以人造地球卫星的速度,可转化为单项式相除问题.解:(3×108)÷(8×103)=(3÷8)·(108÷103)=3.75×104.答:光速是这颗人造地球卫星速度的3.75×104倍.方法总结:解整式除法的实际应用题时,应分清何为除式,何为被除式,然后应当单项式除以单项式法则计算.三、板书设计1.单项式除以单项式的运算法则:单项式相除,把系数、同底数幂分别相除,作为商的因式;对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.2.单项式除以单项式的应用在教学过程中,通过生活中的情景导入,引导学生根据单项式乘以单项式的乘法运算推导出其逆运算的规律,在探究的过程中经历数学概念的生成过程,从而加深印象
解析:由于多边形(三边以上的)不具有稳定性,将其转化为三角形后木架的形状就不变了.根据具体多边形转化为三角形的经验及题中所加木条可找到一般规律.解:过n边形的一个顶点可以作(n-3)条对角线,把多边形分成(n-2)个三角形,所以,要使一个n边形木架不变形,至少需要(n-3)根木条固定.方法总结:将多边形转化为三角形时,所需要的木条根数,可从具体到一般去发现规律,然后验证求解.三、板书设计1.边边边:三边对应相等的两个三角形全等,简写成“边边边”或“SSS”.2.三角形的稳定性本节课从操作探究活动入手,有效地激发了学生的学习积极性和探究热情,提高了课堂的教学效率,促进了学生对新知识的理解和掌握.从课堂教学的情况来看,学生对“边边边”掌握较好,达到了教学的预期目的.存在的问题是少数学生在辅助线的构造上感到困难,不知道如何添加合理的辅助线,还需要在今后的教学中进一步加强巩固和训练
解:(1)电动车的月产量y为随着时间x的变化而变化,有一个时间x就有唯一一个y与之对应,月产量y是时间x的因变量;(2)6月份产量最高,1月份产量最低;(3)6月份和1月份相差最大,在1月份加紧生产,实现产量的增值.方法总结:观察因变量随自变量变化而变化的趋势,实质是观察自变量增大时,因变量是随之增大还是减小.三、板书设计1.常量与变量:在一个变化过程中,数值发生变化的量为变量,数值始终不变的量称之为常量.2.用表格表示数量间的关系:借助表格表示因变量随自变量的变化而变化的情况.自变量和因变量是用来描述我们所熟悉的变化的事物以及自然界中出现的一些变化现象的两个重要的量,对于我们所熟悉的变化,在用了这两个量的描述之后更加鲜明.本节是学好本章的基础,教学中立足于学生的认知基础,激发学生的认知冲突,提升学生的认知水平,使学生在原有的知识基础上迅速迁移到新知上来
方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题
1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35
解:(1)设第一次购买的单价为x元,则第二次的单价为1.1x元,根据题意得14521.1x-1200x=20,解得x=6.经检验,x=6是原方程的解.(2)第一次购买水果1200÷6=200(千克).第二次购买水果200+20=220(千克).第一次赚钱为200×(8-6)=400(元),第二次赚钱为100×(9-6.6)+120×(9×0.5-6.6)=-12(元).所以两次共赚钱400-12=388(元).答:第一次水果的进价为每千克6元;该老板两次卖水果总体上是赚钱了,共赚了388元.方法总结:本题具有一定的综合性,应该把问题分解成购买水果和卖水果两部分分别考虑,掌握这次活动的流程.三、板书设计列分式方程解应用题的一般步骤是:第一步,审清题意;第二步,根据题意设未知数;第三步,根据题目中的数量关系列出式子,并找准等量关系,列出方程;第四步,解方程,并验根,还要看方程的解是否符合题意;最后作答.
【类型二】 分式的约分约分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根据分式的基本性质把公因式约去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法总结:约分的步骤;(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.三、板书设计1.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法则:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;若只改变其中一个符号或三个全变号,则分式的值变成原分式值的相反数.本节课的流程比较顺畅,先探究分式的基本性质,然后顺势探究分式变号法则.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.
【类型三】 分式方程无解,求字母的值若关于x的分式方程2x-2+mxx2-4=3x+2无解,求m的值.解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根.解:方程两边都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①当m-1=0时,此方程无解,此时m=1;②方程有增根,则x=2或x=-2,当x=2时,代入(m-1)x=-10得(m-1)×2=-10,m=-4;当x=-2时,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法总结:分式方程无解与分式方程有增根所表达的意义是不一样的.分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数.三、板书设计1.分式方程的解法方程两边同乘以最简公分母,化为整式方程求解,再检验.2.分式方程的增根(1)解分式方程为什么会产生增根;(2)分式方程检验的方法.
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高