已知一水坝的横断面是梯形ABCD,下底BC长14m,斜坡AB的坡度为3∶3,另一腰CD与下底的夹角为45°,且长为46m,求它的上底的长(精确到0.1m,参考数据:2≈1.414,3≈1.732).解析:过点A作AE⊥BC于E,过点D作DF⊥BC于F,根据已知条件求出AE=DF的值,再根据坡度求出BE,最后根据EF=BC-BE-FC求出AD.解:过点A作AE⊥BC,过点D作DF⊥BC,垂足分别为E、F.∵CD与BC的夹角为45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度为3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的长约为3.1m.方法总结:考查对坡度的理解及梯形的性质的掌握情况.解决问题的关键是添加辅助线构造直角三角形.
一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是( )A.摸出的4个球中至少有一个是白球B.摸出的4个球中至少有一个是黑球C.摸出的4个球中至少有两个是黑球D.摸出的4个球中至少有两个是白球解析:∵袋子中只有3个白球,而有5个黑球,∴摸出的4个球可能都是黑球,因此选项A是不确定事件;摸出的4个球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪种情况,至少有一个球是黑球,∴选项B是必然事件;摸出的4个球可能为1黑3白,∴选项C是不确定事件;摸出的4个球可能都是黑球或1白3黑,∴选项D是不确定事件.故选B.方法总结:事件类型的判断首先要判断该事件发生与否是不是确定的.若是确定的,再判断其是必然发生的(必然事件),还是必然不发生的(不可能事件).若是不确定的,则该事件是不确定事件.
解析:(1)根据表中信息,用优等品频数m除以抽取的篮球数n即可;(2)根据表中数据,优等品频率为0.94,0.95,0.93,0.94,0.94,稳定在0.94左右,即可估计这批篮球优等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)这批篮球优等品的概率估计值是0.94.三、板书设计1.频率及其稳定性:在大量重复试验的情况下,事件的频率会呈现稳定性,即频率会在一个常数附近摆动.随着试验次数的增加,摆动的幅度有越来越小的趋势.2.用频率估计概率:一般地,在大量重复实验下,随机事件A发生的频率会稳定到某一个常数p,于是,我们用p这个常数表示随机事件A发生的概率,即P(A)=p.教学过程中,学生通过对比频率与概率的区别,体会到两者间的联系,从而运用其解决实际生活中遇到的问题,使学生感受到数学与生活的紧密联系
解1:设该多边形边数为n,这个外角为x°则 因为n为整数,所以 必为整数。即: 必为180°的倍数。又因为 ,所以 解2:设该多边形边数为n,这个外角为x。又 为整数, 则该多边形为九边形。第二环节:随堂练习,巩固提高1.七边形的内角和等于______度;一个n边形的内角和为1800°,则n=________。2.多边形的边数每增加一条,那么它的内角和就增加 。3.从多边形的一个顶点可以画7条对角线,则这个n边形的内角和为( )A 1620° B 1800° C 900° D 1440°4.一个多边形的各个内角都等于120°,它是( )边形。5.小华想在2012年的元旦设计一个内角和是2012°的多边形做窗花装饰教室,他的想法( )实现。(填“能”与“不能”)6. 如图4,要测量A、B两点间距离,在O点打桩,取OA的中点 C,OB的中点D,测得CD=30米,则AB=______米.
在因式分解的几种方法中,提取公因式法师最基本的的方法,学生也很容易掌握。但在一些综合运用的题目中,学生总会易忘记先观察是否有公因式,而直接想着运用公式法分解。这样直接导致有些题目分解错误,有些题目分解不完全。所以在因式分解的步骤这一块还要继续加强。其实公式法分解因式。学生比较会将平方差和完全平方式混淆。这是对公式理解不透彻,彼此的特征区别还未真正掌握好。大体上可以从以下方面进行区分。如果是两项的平方差则在提取公因式后优先考虑平方差公式。如果是三项则优先考虑完全平方式进行因式分解。培养学生的整体观念,灵活运用公式的能力。注重总结做题步骤。这章节知识看起来很简单,但操作性很强的,相同或者相似的式子比较熟悉而需要转化的或者多种公式混合使用的式子就难以入手,基础不好的学生需要手把手的教,因此,应该引导学生总结多项式因式分解的一般步骤①如果多项式的各项有公因式,那么先提公因式;
教学效果:部分学生能举一反三,较好地掌握分式方程及其应用题的有关知识与解决生活中的实际问题等基本技能.第六环节 课后练习四、教学反思数学来源于生活,并应用于生活,让学生用数学的眼光观察生活,除了用所学的数学知识解决一些生活问题外,还可以从数学的角度来解释生活中的一些现象,面向生活是学生发展的“源头活水”.在解决实际生活问题的实例选择上,我们尽量选择学生熟悉的实例,如:学生身边的事,购物,农业,工业等方面,让学生真切地理解数学来源于生活这一事实。有些学生对应用题有一种心有余悸的感觉,其关键是面对应用题不知怎样分析、怎样找到等量关系。在教学中,如果采用列表的方法可帮助学生审题、找到等量关系,从而学会分析问题。可能学生最初并不适应这种做法,可采用分步走的方法,首先,让学生从一些简单、类似的问题中模仿老师的分析方法,然后在练习中让学生悟出解决问题的窍门,学会举一反三,最后达到能独立解决问题的目的。
方法总结:作平移图形时,找关键点的对应点是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.三、板书设计1.平移的定义在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2.平移的性质一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等.3.简单的平移作图教学过程中,强调学生自主探索和合作交流,学生经历将实际问题抽象成图形问题,培养学生的逻辑思维能力和空间想象能力,使得学生能将所学知识灵活运用到生活中.
解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.
1、结合具体生活场景,能运用所学的乘法口诀解决简单的实际问题,通过图与式的对应,进一步理解乘法的意义。 2、能熟练运用口诀进行计算,提高灵活运用口诀解决实际问题的能力。 3、体会数学与实际生活的联系,培养用数学的意识,体验口诀在解决问题中的作用。 运用所学乘法解决简单的实际问题。 结合实际情景理解乘法的意义。 1、口算: 5×2=10 6×2=12 8×5=40 2×7=14 5×9=45 3×5=15 2×6=12 2×9=18 4×2=8 2、谈话导入:在前面的学习中,我们认识了乘法,而且还学习了2和5的乘法口诀。这节课,老师想请同学们用这些跟乘法有关的知识来帮助老师一起解决生活中遇到的问题,一起来看一看吧。快乐休息时间到了,学校的大操场突然热闹起来了,你们一定非常喜欢课件活动吧!看,操场上同学们有的在玩老鹰捉小鸡的游戏,有的在进行乒乓球比赛,有的在跳绳,还有的在踢毽子……真热闹啊!
(1)本周哪一天河流水位最高,哪一天河流水位最低,它们位于警戒水位之上还是之下,与警戒水位的距离分别是多少?(2)与上周末相比,本周末河流的水位是上升还是下降了?解析:(1)先规定其中一个为正,则另一个就用负表示.理解表中的正负号表示的含义,根据条件计算出每天的水位即可求解;(2)只要观察星期日的水位是正负即可.解:(1)前两天的水位是上升的,第1天的水位是+0.20米;第2天的水位是+0.20+0.81=+1.01米;第3天的水位是+1.01-0.35=+0.66米;第4天的水位是+0.66+0.13=+0.79米;第5天的水位是0.79+0.28=+1.07米;第6天的水位是1.07-0.36=+0.71米;第7天的水位是0.71-0.01=+0.7米;则水位最低的是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米,则本周末河流的水位上升了0.7米.方法总结:解此题的关键是分析题意列出算式,用的数学思想是转化思想,即把实际问题转化成数学问题.探究点二:有理数的加减混合运算在生活中的其他应用
活动目的:(1)通过小组讨论活动,让学生理解坐标系的特点,并能应用特点解决问题。(2)培养学生逆向思维的习惯。(3)在小组讨论中培养学生勇于探索,团结协作的精神。第四环节:练习随堂练习 (体现建立直角坐标系的多样性)(补充)某地为了发展城市群,在现有的四个中小城市A,B,C,D附近新建机场E,试建立适当的直角坐标系,并写出各点的坐标。第五环节:小结内容:小结本节课自己的收获和进步,从知识和能力上两个方面总结,老师予于肯定和鼓励。目的:鼓励学生大胆发言,敢于表达自己的观点,同时学生之间可以相互学习,共同提高,老师给予肯定和鼓励,激发学生的学习热情。第六环节:布置作业A类:课本习题5.5。B类:完成A类同时,补充:(1)已知点A到x轴、y轴的距离均为4,求A点坐标;(2)已知x轴上一点A(3,0),B(3,b),且AB=5,求b的值。
方法总结:绝对值小于1的数也可以用科学记数法表示,一般形式为a×10-n,其中1≤a<10,n为正整数.与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数前面的0的个数所决定.【类型二】 将用科学记数法表示的数还原为原数用小数表示下列各数:(1)2×10-7; (2)3.14×10-5;(3)7.08×10-3; (4)2.17×10-1.解析:小数点向左移动相应的位数即可.解:(1)2×10-7=0.0000002;(2)3.14×10-5=0.0000314;(3)7.08×10-3=0.00708; (4)2.17×10-1=0.217.方法总结:将科学记数法表示的数a×10-n还原成通常表示的数,就是把a的小数点向左移动n位所得到的数.三、板书设计用科学记数法表示绝对值小于1的数:一般地,一个小于1的正数可以表示为a×10n,其中1≤a<10,n是负整数.从本节课的教学过程来看,结合了多种教学方法,既有教师主导课堂的例题讲解,又有学生主导课堂的自主探究.课堂上学习气氛活跃,学生的学习积极性被充分调动,在拓展学生学习空间的同时,又有效地保证了课堂学习质量
一、说教材《赠刘景文》这首古诗的作者是苏轼。这首古诗是写秋末的景色,第一句以荷败、菊残,写出了秋末的特征。接下来诗人以橙子的金黄与橘子的青绿,把深秋的景色点缀得色彩鲜明而富有生气。诗人在此一反悲秋的调子,突出了秋天是收获的季节。第二行诗赞颂了菊花的残枝有傲霜凌寒的气概。二、说教学目标1.学会本课生字,重点理解诗句中“擎、残、犹”的意思。了解诗句的含义。2.能正确、流利、有感情地朗读古诗和背诵古诗。3.通过对诗句的诵读感悟,培养学生丰富的想象力和语言表达能力。体会诗中描绘的浓浓秋色,感受诗歌美的意境和深刻的哲理。4.通过学习课文,唤起学生面对生活要乐观向上,不泄气,珍惜现在的大好时光。三、教学重、难点1.通过“欣赏意境”的训练和利用画面再现,从词义理解到理解全句、全篇,来帮助学生领悟、感受全文。(重点)2.通过对诗句的诵读感悟,培养学生丰富的想象力和语言表达能力。体会诗中描绘的浓浓秋色,感受诗歌美的意境和深刻的哲理。(难点)
一、说教材这首诗都描绘了祖国山川景色,抒发了赞美之情;《望天门山》头两句描写山川气势。“天门中断楚江开,碧水东流至此回。”第一句主要先写山,天门山似乎是由于水流的冲击而从中间豁然断开,江水从断口奔涌而出。第二句写水,浩浩荡荡的长江被天门山阻挡,激起滔天的波浪。第三、四句写行船的感受。坐在小船上迎着阳光顺流而下,感觉两岸青山相对而来。诗歌通过对天门山景象和内心体验的描述,赞美了大自然的神奇壮丽,表达了乐观豪迈的情感。二、说教学目标1.理解词义句意,培养学生丰富的想象力和语言表达能力。2.体会作者热爱祖国山水的感情,感受诗歌美的意境。3.掌握古诗的学习方法,培养学生的学习能力。4.能有感情地朗读和背诵全诗。三、说教学重难点1.引导学生体会感情,欣赏意境。(重点)2.引导学生理解难懂字词的意思,并通过词义理解达到理解全句、全篇的意思。(难点)
二、说教学目标1.学会本课生字,重点理解诗句中“坐”的意思。了解诗句的含义。2.能正确、流利、有感情地朗读课文和背诵课文。3.通过对诗句的诵读感悟,培养学生丰富的想象力和语言表达能力。体会诗中描绘的浓浓秋色,感受诗歌美的意境。4.通过理解与朗读去感受浓浓的秋色,激发学生对大自然的热爱。 三、说教学重、难点 1.通过“欣赏意境”的训练和词义理解,来帮助学生领悟、感受全文。(重点)2.通过学习课文,唤起学生了解大自然,渴望走进大自然的愿望。(难点)四、说教法、学法1.话激趣,营造气氛。2.握方法,主动学习。3.味想象,欣赏意境。五、说教学过程(一)谈话激趣,导入新课。小朋友,秋天已经悄悄的来到了我们身边,睁开你明亮的眼睛看看,秋天给我们带来了什么?(播放课件)生交流。
一、说教材《望洞庭》是统编教材三年级语文上册第六组第一篇课文《古诗三首》中的第三首。古代教育学家孔子说:“不学诗,无以言。”这句话在今天有很大的意义,因为古诗语言精炼,情感强烈,节奏鲜明,意境优美,引导学生学些古诗,可以陶冶情操,丰富想象,还可以培养学生对语言文字的兴趣和敏感力。是我们对学生进行语言文字训练和审美教育的好材料。刘禹锡的《望洞庭》选择了月夜遥望的角度,把千里洞庭尽收眼底,抓住最具有代表性的湖光和山色,通过丰富的想象和形象的比喻,独出心裁的把洞庭美景再现于纸上,表现出惊人的艺术功力,给人以莫大的艺术享受。二、说教学目标1.能正确、流利有感情地朗读课文,背诵课文。2.理解词义句意,并能写出《望洞庭》一诗描绘的景色,培养学生丰富的想象力和语言表达能力。3.感悟诗歌的意境,使学生从中受到美的熏陶。三、说教学重难点1.背诵古诗。理解词语“两相和”、“白银盘”和“青螺”,感悟诗境,体会诗人对洞庭湖的喜爱与赞美之情。(重点)2.想象这首诗描绘的优美景象,感受诗人笔下的月夜洞庭山水的柔美皎洁和精美绝伦。(难点)
一、说教材《夜书所见》是统编教材三年级语文上册第二组课文中的古诗。这是南宋诗人叶绍翁写的客游在外,因秋风落叶,感到孤独郁闷,由看到远处篱笆下的灯火,料想是小孩在捉蟋蟀,不禁回忆起自己的故乡和童年的生活,于是那种郁闷之情又被一种亲切之感所代替。二、说教学目标 1.会认会写本课生字。2.引导学生理解诗意体会诗人所描绘的情景。3.学习借助注释理解诗意,体会诗歌的感情。4.有感情的朗读古诗,背诵古诗。 激发和培养学习古诗的兴趣。三、说教学重难点1.学习借助注释理解诗意,体会诗歌的感情。(重点)2.感受诗中的秋意和诗情,激发学习古诗的兴趣。(难点)
四、说教学过程课前预习我在教学《不懂就要问》前布置学生做以下预备工作:读一读,想一想课文主要写谁的一件什么事?再读一读,数一数这一篇课文有几个自然段,想一想每个自然段讲什么?我之所以要求学生在课前做到这两点,是因为为了培养学生有预习的一般意义而且在教学中提高质量、增强密度。在教学过程中,为了能达到教学目标,突出重点,突破难点,我从以下几点进行设计。★以情激思。运用情感教学,不但能加深学生对课文的理解,而且能有效地激发学生学习的兴趣的求知欲,调动学生学习的积极性和主动性,以提高课堂教学效果。因此,在教学中处处注意激发学生的兴趣,调动积极主动性。
二、说学情对于有着一定阅读积累的三年级孩子来说,理解课文内容不难。但对于抓住特点进行事物描写的方法以及文本中的留心观察周围事物和人与动物和谐相处的人文理念还未能准确理解,需要教师的指点。三、说教学目标1.学生会认读“父”“啦”“鹦”“鹉”“悄”五个生字,会读会写“搭”“亲”“父”“沙”“啦”等13个生字。2.学生能够正确、流利、有感情地朗读课文,通过品读对翠鸟的外形和捕鱼姿态、动作的描述,初步学习仔细观察、抓住特点进行事物描写的方法。3.使学生体会人与动物、自然和谐共处的美妙境界,培养其亲近自然、热爱自然的美好情感。四、说教学重难点1.通过对课文的学习,培养学生亲近自然、热爱自然的美好情感。(重点)引导学生品读对翠鸟外形和捕鱼动作的描写,初步学习仔细观察、对事物的描写方法。(难点)
二、说教学目标1.正确理解本课词语,养成自主阅读的习惯。2.有感情地朗读课文,通过对重点词句的理解,体会父亲爱鸟的情感;3.学生通过感受“父亲一生最喜欢树林和歌唱的鸟”的具体体现,激发学生爱鸟护鸟以及保护大自然的思想感情。三、说教学重难点1.有感情地朗读课文,理解“父亲一生最喜欢树林和歌唱的鸟”的具体体现。(重点)2.通过语言、动作和神态的描写体会父亲的爱鸟情感,激发学生爱护动物、保护大自然的思想感情。(难点)四、说教法学法【教法】首先,我创设情境激发学生的学习欲望,在探索新知的过程中重点运用朗读指导的教学方法,引导学生对文本进行思考和解读,激励学生全身心地投入到课文的学习中去,并感受人鸟亲如一家的美好情境。【学法】学习方法是学生学习活动规律的理性总结。根据《语文新课程标准》的要求,为了充分体现“以教师为主导,以学生为主体”,这节课在指导学生的学习方法和培养学生的学习能力方面主要采取以下方法:分组讨论法、自主探究法、情境表演法,通过学法指导,让学生真正懂得如何去观察、思考、学习。