一、游戏活动激趣,认识对称物体1、游戏“猜一猜”:课件依次出示“剪刀、扫帚、飞机、梳子”的一部分,分男、女生猜。2、认识对称物体:1)师质疑:为什么女生猜得又快又准呢?2)小结:像这样两边形状、大小都完全相同的物体,我们就说它是对称物体。(板书:对称)二、猜想验证新知,认识轴对称图形(一)初步感知对称图形1、将“剪刀、飞机、扇子”等对称物体抽象出平面图形,让学生观察,这些平面图形还是不是对称的。2、师小结:像这样的图形,叫做对称图形。(板书:图形)(二)猜想验证对称图形1、猜一猜:出示“梯形、平行四边形、圆形、燕尾箭头”等平面图形,让学生观察。师:这些平面图形是不是对称图形?怎样证明它们是不是对称图形?
2、学习添画背景的方法。 3、感受比较作品添画背景前后的不同视觉效果,激发孩子细致添画、涂色的兴趣。活动准备: 1、幼儿每人一张印好手印的作品。 2、不同块状背景图片。 3、有无背景的两幅范画。活动过程: 一、对比两幅手印画(一幅有背景、一幅没有添画背景)感受比较作品添画前后的不同视觉效果,激发幼儿添画作品背景的兴趣。 这里有两幅花瓶的图画,你们喜欢哪一幅?为什么? 小结:手印本来只有一种颜色,颜色很单一,但是添画了彩色的背景,不仅更加突出了花瓶,还使得整幅画更加漂亮了。
活动过程:1. 请幼儿将语言课上学的诗歌《春天的秘密》朗诵一下,从中引导幼儿想象春天的景象。2.提问:(1)“你们先闭上眼睛想一想诗歌中都说到了哪些春天的秘密(2)启发幼儿想一想还有哪些是春天的秘密?(小燕子、小草、小动物)3.讨论画春天的内容,充分发挥自己的想象力。4.分组讨论设计本组绘画内容进行分工(谁画什么自己要说出来,最好不与别人重复)商量时小声点,不要把自己的内容让别人听到,要不然就不是秘密了。5.幼儿分组开始画,每名幼儿都要参与,一个一个的画,画好了的就可以涂色。 6.教师在指导过程中,注意将各组内容要保密,每组的内容都有不同的特点,以免重复,可以提一些建议。 7.启发引导幼儿想办法,怎样才能使我们的画成为秘密? 延伸活动:装订好幼儿的作品放到表演区编故事。
2.初步学习互相欣赏作品,并试着用语言描述泡泡。 教学准备: 1.画有小鱼的背景图人手一张。范画一张。 2.收集若干大小不一的瓶盖等作印章,颜料若干盘,抹布。 3.《小鱼游》的音乐。 教学过程: 一、导入,引起幼儿的兴趣。 师:今天天气真好!小鱼宝宝们,跟着鱼妈妈出去玩吧!(播放《小鱼游》的音乐) 二、了解用瓶盖印画的方法来表现大大小小的圆圈泡泡。 1.师:小鱼宝宝真可爱,一边游泳一边还会吐泡泡,怎么吐泡泡的? 幼:波罗波罗… 2.师:今天老师带来一个新工具,看是什么呀?(出示瓶盖) 幼:瓶盖。
准备:1、名画课件:大碗岛的星期天 2、画纸、绘画工具人手一份。 3、事先和幼儿一起认识对比色。 4、事先带幼儿到田野里去秋游。活动过程: 一、导入。 师:小朋友,你们以前画过人吗?你画的人是什么样子的?是正面、背面还是侧面? 幼儿自由回答。二、演示名画《大碗岛的星期天》,引导幼儿欣赏。 师:今天老师也带来了一幅人物画,请你来找一找画面中的人是面向哪里的。 教师播放课件让幼儿欣赏,提问: (1)你在画中看到了什么? (2)这些人在干什么?他们有些什么样的姿态?你能不能表演一下? (3)这是什么季节?你能猜出他们在什么地方?有什么样的风光?
准备: 1、油菜花实物若干,供幼儿实际观察。 2、春游时的照片,让幼儿感知油菜花漫山遍野金黄色的美景。 3、教师画好油菜花枝干的画纸若干(每桌一张),水彩笔、油画棒过程:1、导入: 师:上次我们春游时,在野外看到了一种金黄色的花,今天老师把它带来了,你们来看看它叫什么名字?(油菜花) 2、观察油菜花的外形。
2、初步学会自己安排画面,添加相应的背景丰富画面。 3、乐意在绘画过程中思考、克服困难,逐步提高组织画面的能力。 难点: 幼儿自己合理安排画面,添加相应的背景丰富画面。活动准备: 1、幼儿用纸、记号笔、油画棒 小猪的头、身体、脚、尾巴各4份活动过程: 一、导入活动 1、师:小朋友们,今天我给大家带来一首“顺口溜”,请大家一起仔细来听听看。 师:现在小眼睛看老师,一起跟我再来学一下这首“顺口溜”。 2、这么好听的顺口溜我还可以把它变成一个动物呢,你们猜猜看,会是什么动物?(幼儿猜谜:大狮子、大老虎、大熊猫)
活动准备: 1、已经绘画过海洋中的生物的造型和特征。 2、带有波浪版画的范图。 3、各色颜料、吹塑纸。 活动过程: 一、幼儿迁移经验,回忆海洋中的生物。 师:“小朋友我们知道海洋是什么样了?” (让幼儿根据自己的经验进行回答,教师提醒幼儿较完整地表达自己的意思,并说说不同生物的样子。) 幼儿尝试设计自己的潜艇或潜水服。
活动目标1、知道生活中无用的瓶子经过装饰可以美化环境。2、通过对各种投入材料的联想组合,设计富有创意的立体装饰瓶。 重点难点 利用瓶子的各种形状来设计成装饰物。 活动准备1.师生共同收集各种形状的玻璃瓶。2.装饰用的材料(毛线、麻绳、干花、餐巾纸、玉米、辣椒干、树叶、即时贴、彩绳等)。3.欣赏作品。 活动流程 激发兴趣、导入活动—引导构思、联想组合—自主选材、想象制作—相互介绍、欣赏作品。 活动过程 (一)激发兴趣,导人活动。1、带领幼儿观察延中创意室内的各种欣赏作品。2、向幼儿介绍生活中各种形状的瓶子及各种装饰材料。3、激发幼儿对瓶子进行创意装饰的愿望。
(一)活动目标: 1、初步了解蚕一生的主要成长阶段(卵、幼虫、蛹、成虫)及其外形特征,体验生命的多样性。 2、喜欢蚕,乐意用多种方式表现蚕的生活习性。(二)材料提供:1、多媒体制作《有趣的蚕》、范例作品 2、准备能表现蚕宝宝的各种物品如:绘画工具、彩泥、餐巾纸等(三)指导过程:
活动目标:1、尝试从前向后安排画面,初步表现简单的重叠。2、乐于参与造长城活动,为自己建造长城而感到自豪。 活动准备:1、黑色水笔、油画棒。2、课件。 活动过程:一、欣赏讨论:1、我们的首都在哪里?北京有哪些好玩的地方?2、这是什么地方?长城建造在哪里?它象什么?3、中国古代劳动人民为什么要建造长城?现在的长城有什么用处?
2.巩固单色画的作画方法,使作品丰满。 3.通过活动,充分发挥幼儿的想象力和创造力。二.准备黑影若干种,示范黑影和实物各一种。三.过程(一)导入活动,引起兴趣师:昨天我请了一位粗心的照相师帮我印照片,他实在太粗心了只印出了一个影子,你们看!(二)出示黑影,启发幼儿想象 1.师:这就是其中一张照片。你们想想:这可能是什么东西的影子呢?(幼儿从不同方向进行观察)。
活动目标:1、初步了解横线、竖线交叉形成的效果,能大胆编制自己喜欢的网,注意线与线之间的疏密;2、能绘画出几种基本的网状图形;活动准备:自制图片 宣纸 毛笔 颜料活动过程:一、教师做小鱼游动作,带领幼儿进入活动室。(配乐)二、出示图画1、师:(1)从前有个捕鱼人,他非常厉害,他捕了好多好多的鱼。看!(出示图片)他为什么他能抓到这么多的鱼呢?(捕鱼人用网抓鱼)这些鱼能不能从网里跑出来?为什么?他的网怎么织的?怎么样的?(观察网的特点,认识横竖线交叉的编织方法)为什么能牢牢网住鱼不会跑掉呢?(注意观察网眼的疏密)2、师:小朋友你们仔细看看这张图上,有没有发现鱼是不是都被抓到了?(一条鱼跑得出来,说明编织时注意控制网眼大小)3、教师补画
教学目标:1.会画直棱柱(仅限于直三棱柱和直四棱柱)的三种视图,体会这几种几何体与其视图之间的相互转化。2. 会根据三视图描述原几何体。教学重点:掌握直棱柱的三视图的画法。能根据三视图描述原几何体。教学难点:几何体与视图之间的相互转化。培养空间想像观念。课型:新授课教学方法:观察实践法一、实物观察、空间想像观察:请同学们拿出事先准备好的直三棱柱、直四棱柱,根据你所摆放的位置经过 想像,再抽象出这两个直棱柱的主视图,左视图和俯视图。绘制:请你将抽象出来的三种视图画出来,并与同伴交流。比较:小亮画出了其中一个几何体的主视图、左视图和俯视图,你认为他画的对不对?谈谈你的看法。拓展:当你手中的两个直棱柱摆放的角度变化时,它们的三种视图是否会随之改变?试一试。
解析:熟记常见几何体的三种视图后首先可排除选项A,因为长方体的三视图都是矩形;因为所给的主视图中间是两条虚线,故可排除选项B;选项D的几何体中的俯视图应为一个梯形,与所给俯视图形状不符.只有C选项的几何体与已知的三视图相符.故选C.方法总结:由几何体的三种视图想象其立体形状可以从如下途径进行分析:(1)根据主视图想象物体的正面形状及上下、左右位置,根据俯视图想象物体的上面形状及左右、前后位置,再结合左视图验证该物体的左侧面形状,并验证上下和前后位置;(2)从实线和虚线想象几何体看得见部分和看不见部分的轮廓线.在得出原立体图形的形状后,也可以反过来想象一下这个立体图形的三种视图,看与已知的三种视图是否一致.探究点四:三视图中的计算如图所示是一个工件的三种视图,图中标有尺寸,则这个工件的体积是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三种视图可以看出,该工件是上下两个圆柱的组合,其中下面的圆柱高为4cm,底面直径为4cm;上面的圆柱高为1cm,底面直径为2cm,则V=4×π×22+1×π×12=17π(cm3).故选B.
故最少由9个小立方体搭成,最多由11个小立方体搭成;(3)左视图如右图所示.方法点拨:这类问题一般是给出一个由相同的小正方体搭成的立体图形的两种视图,要求想象出这个几何体可能的形状.解答时可以先由三种视图描述出对应的该物体,再由此得出组成该物体的部分个体的个数.三、板书设计视图概念:用正投影的方法绘制的物体在投影 面上的图形三视图的组成主视图:从正面得到的视图左视图:从左面得到的视图俯视图:从上面得到的视图三视图的画法:长对正,高平齐,宽相等由三视图推断原几何体的形状通过观察、操作、猜想、讨论、合作等活动,使学生体会到三视图中位置及各部分之间大小的对应关系.通过具体活动,积累学生的观察、想象物体投影的经验,发展学生的动手实践能力、数学思考能力和空间观念.
教学目标:1.经历由实物抽象出几何体的过程,进一步发展空间观念。2.会画圆柱、圆锥、球的三视图,体会这几种几何体与其视图之间的相互转化。3.会根据三视图描述原几何体。教学重点:掌握部分几何体的三视图的画法,能根据三视图描述原几何体。教学难点:几何体与视图之间的相互转化。培养空间想像观念。课型:新授课教学方法:观察实践法教学过程设计一、实物观察、空间想像设置:学生利用准备好的大小相同的正方形方块,搭建一个立体图形,让同学们画出三视图。而后,再要求学生利用手中12块正方形的方块实物,搭建2个立体图形,并画出它们的三视图。学生分小组合作交流、观察、作图。议一议1.图5-14中物体的形状分别可以看成什么样的几何体?从正面、侧面、上面看这些几何体,它们的形状各是什么样的?2.在图5-15中找出图5-14中各物体的主视图。3.图5-14中各物体的左视图是什么?俯视图呢?
如图所示,要用长20m的铁栏杆,围成一个一面靠墙的长方形花圃,怎么围才能使围成的花圃的面积最大?如果花圃垂直于墙的一边长为xm,花圃的面积为ym2,那么y=x(20-2x).试问:x为何值时,才能使y的值最大?二、合作探究探究点一:二次函数y=ax2+bx+c的最值已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为()A.3 B.-1 C.4 D.4或-1解析:∵二次函数y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故选C.方法总结:求二次函数的最大(小)值有三种方法,第一种是由图象直接得出,第二种是配方法,第三种是公式法.变式训练:见《学练优》本课时练习“课堂达标训练” 第1题探究点二:利用二次函数求图形面积的最大值【类型一】 利用二次函数求矩形面积的最大值
③设每件衬衣降价x元,获得的利润为y元,则定价为 元 ,每件利润为 元 ,每星期多卖 件,实际卖出 件。所以Y= 。(0<X<20)何时有最大利润,最大利润为多少元?比较以上两种可能,衬衣定价多少元时,才能使利润最大?☆ 归纳反思 ☆总结得出求最值问题的一般步骤:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方法求出二次函数的最值。☆ 达标检测 ☆ 1、用长为6m的铁丝做成一个边长为xm的矩形,设矩形面积是ym2,,则y与x之间函数关系式为 ,当边长为 时矩形面积最大.2、蓝天汽车出租公司有200辆出租车,市场调查表明:当每辆车的日租金为300元时可全部租出;当每辆车的日租金提高10元时,每天租出的汽车会相应地减少4辆.问每辆出租车的日租金提高多少元,才会使公司一天有最多的收入?
四、做一做(实践)1、用牙签和橡皮泥制作球体和一些柱体和锥体,看哪些同学做得比较标准。2、使出事先准备好的等边三角形纸片,试将它折成一个正四面体。五、试一试(探索)课前,发给学生阅读材料《晶体--自然界的多面体》,让学生通过阅读了解什么是正多面体,正多面体是柏拉图约在公元400年独立发现的,在这之前,埃及人已经用于建筑(埃及金字塔),以此激励学生探索的欲望。教师出示实物模型:正四面体、正方体、正八面体、正十二面体、正二十面体1、以正四面体为例,说出它的顶点数、棱数和面数。2、再让学生观察、讨论其它正多面体的顶点数、棱数和面数。将结果记入书上的P128的表格。引导学生发现结论。3、(延伸):若随意做一个多面体,看看是否还是那个结果。