1.通过预习指导,使学生借助课文的注释、工具书和参考资料了解时代背景、作者简况及各段大意,疏通文句。 2.讲授课文,指出作者政治主张的历史局限时,不必在什么是秦二世而亡的真正原因上旁征博引,同时对文中涉及的历史人物及史实,也不要过多介绍。可在课外指导学生读点通史或历史故事(如《东周列国志》,虽是小说,但基本事件多见诸其书)。
教学过程一、组织上课师生互相问好。二、整体感知1、感性欣赏《新疆之春》:让学生看着画面,聆听音乐,感受完整的音乐形象和音乐风格。2、作品简介:《新疆之春》是一首小提琴独奏曲,作曲家马耀先、李中汉,采用新疆维吾尔族音乐素材,1956年创作的一首具有新疆音乐风格的乐曲,乐曲的感情乐观豪爽,曲调优美、流畅、朗朗上口,深受人民群众的喜爱。3、分段欣赏:将乐曲分成三段式,进行每一段的欣赏和讲解。1)听第一段:A从节奏和旋律方面谈谈自己的感受。B模唱该乐段给你印象最深的一句。2)听第二段:A模唱该乐段的主题节奏。B体会该乐段出现的小提琴演奏技巧。3)听第三段:让学生知道乐曲中的结束句。4、完整欣赏:1)注意乐曲的整体结构。2)体会乐曲的主题特征和演奏技巧。3)对三段式有一个大致的了解。5、总结:1)新疆音乐风格:旋律、节奏……2)乐曲背景:作者、创作环境……3)小提琴演奏技巧:双音、拨弦……师:春天是一年中最重要的季节,是一年中最美丽的季节。今天我们歌唱了祖国美丽的春天,感受了新疆的美丽春天。让我们珍惜这美好的春天,为创造祖国更美的春天努力吧。
教学过程:一、组织教学: 课前播放新疆歌曲让学生进入音乐教室时感受到音乐课堂气氛。 二、音准、听力训练: 1、用哼鸣的方法跟琴模唱 方法:由单音到乐句,音域由低到高再下行。2、节奏听辨及模仿 要求:教师用琴弹奏和弦,学生用手敲击节奏。 三、新课教学: 师:说说你们所了解的新疆,包括服装、特产、歌舞动作、音乐等等。(学生发言)今天我们就再来欣赏一首新疆的器乐曲——《新疆之春》。1、作者简介:马耀先(1938至今)小提琴演奏家,回族,乌鲁木齐人。1959年毕业于西安音乐学院管弦系。同年入中央实验歌剧院任演奏员。1961年调新疆歌舞团任乐队首席兼独奏演员,后任乐队队长。作有《新疆之春》等乐曲和歌曲。 李中汉(1933至今)作曲家,河北定县人。1949年入西北艺术学校学习小提琴。1954年考入西安音乐专科学校专修作曲。在校期间合作创作了《新疆之春》等。现在铁道部第一工程局文工团任作曲。作有小提琴曲《欢乐的牧场》、歌剧音乐《帕丽扎特》等。 2、乐曲初听——思考: (1)、这首乐曲的情绪是怎样的? (2)、在这首乐曲主要是用什么乐器演奏的?用什么乐器做伴奏的?(3)、这首乐曲可以分为几个部分? (要求:学生带着问题聆听并思考,乐曲听完后师生共同解决思考题。)
教学程序:一、创设情境 大屏幕播放歌曲《新疆之春》,学生伴随音乐走进教室。优美的音乐,动人的画面,使人仿佛置身于歌舞之乡——新疆。 (为学生创设轻松、愉快的学习氛围,情境交融,以情诱兴,为学好新课做铺垫。)二、新课导入 列举常见的新疆民族歌舞照片以及习俗。三、整体感知 (1)感性欣赏《新疆之春》 让学生聆听音乐,感受完整的音乐形象和音乐风格。 (初听乐曲,感受音乐,整体把握乐曲的情绪。整体感受是音乐自身规律的体现,也是艺术熏陶饿一个方面的要求,是真正提高音乐素质的有效途径。符合从整体局部的认识规律。体现了音乐教育是以审美为核心,以兴趣爱好为动力的练习,能够引起音乐教育理念。) (2)设置疑问 A、乐曲的音乐风格怎么样?(音调、节奏) B、乐曲用什么乐器演奏的? C、乐曲是采用哪种演奏形式? (根据设置的疑问进行讨论。教师整理归纳:这是一首新疆音乐风格的乐曲,演奏乐器是小提琴,伴奏乐器是钢琴。) (3)作品简介 《新疆之春》是一首小提琴独奏曲,作曲家马耀先、李中汉,采用新疆维吾尔族音乐素材,1956年创作的一首具有新疆音乐风格的乐曲,乐曲的感情乐观豪爽,曲调优美、流畅、朗朗上口,深受人民群众的喜爱。 (4)视唱练习(音乐主题) 引导学生击拍、视唱练习。要求:旋律顺畅、节奏准确,精讲多练,以唱代讲,以唱入境,以唱悟情,最后熟唱乐曲主题。
这是作曲家张千一创作的一首歌曲。以明朗高亢而富有藏族风格的旋律,热情地歌颂了美丽庄严的青藏高原,表达了对祖国锦绣山川的眷恋、热爱之情。全曲为羽调式;节拍以四四拍子为主,间插以四二、四三拍子,引子为散板;曲式结构为有引子、前奏的二段体。引子开始,由人声合唱出一个明朗、高亢、山歌风的衬腔,把人们带入到辽阔的青藏高原的意境之中。接着,由器乐演奏深化了这一音乐主题。A段由起承转合的四个乐句构成。第一乐句作为全曲音乐主题的集中体现,具有秀美、明亮、亲切的特征;第二乐句继续承接着这一特征,切分节奏的运用使之更具活力;第三乐句作为一个转折,主要在前半句的音区和旋律音调上发生了变化,较低的音区和较为低回委婉的旋律,使感情表达更显真挚;第四乐句开头出现的后半拍起唱的节奏,使之既富有变化,又富有动力,后半乐句的旋律与第二乐句的结尾相同,使之具有“合”部的特征。
(一)学生随《乡下的阳光》进教室,师生问好。(二)聆听《黄土高坡》、《洞庭鱼米乡》。1、引入:我们生活在江南,你有没有在电影或电视中看到我国黄土高原?出示地图,找一找黄土高坡的位置。(在我国西北)2、在《黄土高坡》背景音乐下,展示CAL课件中的黄土高原的风土人情的图片:(1)漫漫黄土,低矮的窑洞。(2)沙尘漫漫飞舞。(3)人们在劳动。3、师:是啊,虽然黄土高原自然条件恶劣,但世代居住在这里的人们依然热爱他们的家乡,热爱他们的这一片土地,让我们听听他们的歌《黄土高坡》。设问:这首歌曲给你什么感受?4、刚才我们到了黄土高坡,现在我们一起去有“鱼米之乡”的洞庭湖吧。一起在地图上找一找洞庭湖的位置。(在我国中南)(课件播放洞庭湖区秀丽风景和人们张网捕鱼的图片。(同时播放《洞庭鱼米乡》背景音乐。)
方法总结:在等腰三角形有关计算或证明中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.三、板书设计1.等腰三角形的性质:等腰三角形是轴对称图形;等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴;等腰三角形的两个底角相等.2.运用等腰三角性质解题的一般思想方法:方程思想、整体思想和转化思想.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
【类型四】 含整数指数幂、零指数幂与绝对值的混合运算计算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分别根据有理数的乘方、零指数幂、负整数指数幂及绝对值的性质计算出各数,再根据实数的运算法则进行计算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法总结:熟练掌握有理数的乘方、零指数幂、负整数指数幂及绝对值的性质是解答此题的关键.三、板书设计1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减.2.零次幂:任何一个不等于零的数的零次幂都等于1.即a0=1(a≠0).3.负整数次幂:任何一个不等于零的数的-p(p是正整数)次幂,等于这个数p次幂的倒数.即a-p=1ap(a≠0,p是正整数).从计算具体问题中的同底数幂的除法,逐步归纳出同底数幂除法的一般性质.教学时要多举几个例子,让学生从中总结出规律,体验自主探究的乐趣和数学学习的魅力,为以后的学习奠定基础
解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的内角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法总结:本题主要利用了“直角三角形两锐角互余”的性质和三角形的内角和定理,熟记性质并准确识图是解题的关键.三、板书设计1.三角形的内角和定理:三角形的内角和等于180°.2.三角形内角和定理的证明3.直角三角形的性质:直角三角形两锐角互余.本节课通过一段对话设置疑问,巧设悬念,激发起学生获取知识的求知欲,充分调动学生学习的积极性,使学生由被动接受知识转为主动学习,从而提高学习效率.然后让学生自主探究,在教学过程中充分发挥学生的主动性,让学生提出猜想.在教学中,教师通过必要的提示指明学生思考问题的方向,在学生提出验证三角形内角和的不同方法时,教师注意让学生上台演示自己的操作过程和说明自己的想法,这样有助于学生接受三角形的内角和是180°这一结论
问题:2015年9月24日,美国国家航空航天局(下简称:NASA)对外宣称将有重大发现宣布,可能发现除地球外适合人类居住的星球,一时间引起了人们的广泛关注.早在2014年,NASA就发现一颗行星,这颗行星是第一颗在太阳系外恒星旁发现的适居带内、半径与地球相若的系外行星,这颗行星环绕红矮星开普勒186,距离地球492光年.1光年是光经过一年所行的距离,光的速度大约是3×105km/s.问:这颗行星距离地球多远(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.问题:“10×105×107×102”等于多少呢?二、合作探究探究点:同底数幂的乘法【类型一】 底数为单项式的同底数幂的乘法计算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)mn+1·mn·m2·m.解析:(1)根据同底数幂的乘法法则进行计算即可;(2)先算乘方,再根据同底数幂的乘法法则进行计算即可;(3)根据同底数幂的乘法法则进行计算即可.
方法总结:绝对值小于1的数也可以用科学记数法表示,一般形式为a×10-n,其中1≤a<10,n为正整数.与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数前面的0的个数所决定.【类型二】 将用科学记数法表示的数还原为原数用小数表示下列各数:(1)2×10-7; (2)3.14×10-5;(3)7.08×10-3; (4)2.17×10-1.解析:小数点向左移动相应的位数即可.解:(1)2×10-7=0.0000002;(2)3.14×10-5=0.0000314;(3)7.08×10-3=0.00708; (4)2.17×10-1=0.217.方法总结:将科学记数法表示的数a×10-n还原成通常表示的数,就是把a的小数点向左移动n位所得到的数.三、板书设计用科学记数法表示绝对值小于1的数:一般地,一个小于1的正数可以表示为a×10n,其中1≤a<10,n是负整数.从本节课的教学过程来看,结合了多种教学方法,既有教师主导课堂的例题讲解,又有学生主导课堂的自主探究.课堂上学习气氛活跃,学生的学习积极性被充分调动,在拓展学生学习空间的同时,又有效地保证了课堂学习质量
【类型二】 根据不等式的变形确定字母的取值范围如果不等式(a+1)x<a+1可变形为x>1,那么a必须满足________.解析:根据不等式的基本性质可判断a+1为负数,即a+1<0,可得a<-1.方法总结:只有当不等式的两边都乘(或除以)一个负数时,不等号的方向才改变.三、板书设计1.不等式的基本性质性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变;性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变;性质3:不等式的两边都乘(或除以)同一个负数,不等号方向改变.2.把不等式化成“x>a”或“x<a”的形式“移项”依据:不等式的基本性质1;“将未知数系数化为1”的依据:不等式的基本性质2、3.本节课学习不等式的基本性质,在学习过程中,可与等式的基本性质进行类比,在运用性质进行变形时,要注意不等号的方向是否发生改变;课堂教学时,鼓励学生大胆质疑,通过练习中易出现的错误,引导学生归纳总结,提升学生的自主探究能力.
解:(1)设第一次购买的单价为x元,则第二次的单价为1.1x元,根据题意得14521.1x-1200x=20,解得x=6.经检验,x=6是原方程的解.(2)第一次购买水果1200÷6=200(千克).第二次购买水果200+20=220(千克).第一次赚钱为200×(8-6)=400(元),第二次赚钱为100×(9-6.6)+120×(9×0.5-6.6)=-12(元).所以两次共赚钱400-12=388(元).答:第一次水果的进价为每千克6元;该老板两次卖水果总体上是赚钱了,共赚了388元.方法总结:本题具有一定的综合性,应该把问题分解成购买水果和卖水果两部分分别考虑,掌握这次活动的流程.三、板书设计列分式方程解应用题的一般步骤是:第一步,审清题意;第二步,根据题意设未知数;第三步,根据题目中的数量关系列出式子,并找准等量关系,列出方程;第四步,解方程,并验根,还要看方程的解是否符合题意;最后作答.
【类型二】 分式的约分约分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根据分式的基本性质把公因式约去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法总结:约分的步骤;(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.三、板书设计1.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法则:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;若只改变其中一个符号或三个全变号,则分式的值变成原分式值的相反数.本节课的流程比较顺畅,先探究分式的基本性质,然后顺势探究分式变号法则.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.
探究点二:列分式方程某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方程为()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:设原计划每天生产x个,则实际每天生产(x+4)个,根据题意可得等量关系:(原计划20天生产的零件个数+10个)÷实际每天生产的零件个数=15天,根据等量关系列出方程即可.设原计划每天生产x个,则实际每天生产(x+4)个,根据题意得20x+10x+4=15.故选A.方法总结:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.三、板书设计1.分式方程的概念2.列分式方程本课时的教学以学生自主探究为主,通过参与学习的过程,让学生感受知识的形成与应用的价值,增强学习的自觉性,体验类比学习思想的重要性,然后结合生活实际,发现数学知识在生活中的广泛应用,感受数学之美.
【类型三】 分式方程无解,求字母的值若关于x的分式方程2x-2+mxx2-4=3x+2无解,求m的值.解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根.解:方程两边都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①当m-1=0时,此方程无解,此时m=1;②方程有增根,则x=2或x=-2,当x=2时,代入(m-1)x=-10得(m-1)×2=-10,m=-4;当x=-2时,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法总结:分式方程无解与分式方程有增根所表达的意义是不一样的.分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数.三、板书设计1.分式方程的解法方程两边同乘以最简公分母,化为整式方程求解,再检验.2.分式方程的增根(1)解分式方程为什么会产生增根;(2)分式方程检验的方法.
把解集在数轴上表示出来,并将解集中的整数解写出来.解析:分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集,再找出解集范围内的整数即可.解:x+23<1 ①,2(1-x)≤5 ②,由①得x<1,由②得x≥-32,∴不等式组的解集为-32≤x<1.则不等式组的整数解为-1,0.方法总结:此题主要考查了一元一次不等式组的解法,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.三、板书设计一元一次不等式组概念解法不等式组的解集利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的基础之上.解不等式组时,先解每一个不等式,再确定各个不等式组的解集的公共部分.
分式1x2-3x与2x2-9的最简公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最简公分母为x(x+3)(x-3).方法总结:最简公分母的确定:最简公分母的系数,取各个分母的系数的最小公倍数;字母及式子取各分母中所有字母和式子的最高次幂.“所有字母和式子的最高次幂”是指“凡出现的字母(或含字母的式子)为底数的幂的因式选取指数最大的”;当分母是多项式时,一般应先因式分解.【类型二】 分母是单项式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先确定最简公分母,找到各个分母应当乘的单项式,分子也相应地乘以这个单项式.解:(1)最简公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最简公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最简公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.
解析:(1)先把第二个分式的分母y-x化为-(x-y),再把分子相加减,分母不变;(2)先把第二个分式的分母a-b化为-(b-a),再把分子相加减,分母不变.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法总结:分式的分母互为相反数时,可以把其中一个分母放到带有负号的括号内,把分母化为完全相同.再根据同分母分式相加减的法则进行运算.三、板书设计1.同分母分式加减法法则:fg±hg=f±hg.2.分式的符号法则:fg=-f-g,-fg=f-g=-fg.本节课通过同分母分数的加减法类比得出同分母分式的加减法.易错点一是符号,二是结果的化简.在教学中,让学生参与课堂探究,进行自主归纳,并对易错点加强练习.从而让学生对知识的理解从感性认识上升到理性认识.
有三种购买方案:购A型0台,B型10台;A型1台,B型9台;A型2台,B型8台;(2)240x+200(10-x)≥2040,解得x≥1,∴x为1或2.当x=1时,购买资金为12×1+10×9=102(万元);当x=2时,购买资金为12×2+10×8=104(万元).答:为了节约资金,应选购A型1台,B型9台.方法总结:此题将现实生活中的事件与数学思想联系起来,属于最优化问题,在确定最优方案时,应把几种情况进行比较.三、板书设计应用一元一次不等式解决实际问题的步骤:实际问题――→找出不等关系设未知数列不等式―→解不等式―→结合实际问题确定答案本节课通过实例引入,激发学生的学习兴趣,让学生积极参与,讲练结合,引导学生找不等关系列不等式.在教学过程中,可通过类比列一元一次方程解决实际问题的方法来学习,让学生认识到列方程与列不等式的区别与联系.