尊敬的各位老师,亲爱的同学们:大家早上好!过几天我们要过一个快乐而有意义的节日,你们知道是什么节日吗?“六一”国际儿童节是你们自己的节日,也是你们最快乐的日子。学校为了使同学们过得更加有意义,将在明天举行丰富多彩的活动,有精彩的文艺表演,还有你们最喜欢的游艺活动呢。在这里,我先向同学们致以节日的祝贺,同时,向辛勤培育你们成长的老师致以崇高的敬意。在我们国家,许多人把少年儿童比作“祖国的花朵”、“祖国的未来”。“祖国的花朵”是什么意思呢?这除了赞美你们的天真、活泼、可爱之外,还另有很大的意义呢,那就是希望你们在祖国这个大花园里,迎着明媚的春光茁壮成长,像花朵一样竞相开放,把祖国装点得更加绚丽多彩。
说教材 今天,我说的课文是人教版一年级下册的《一分钟》。课文以小学生喜爱的形式出现,内容较为通俗。主人公元元因为早上多睡了一分钟,带来的却是20分钟的迟到,是一路焦急地等待和不停地叹息,是步行的辛苦和脸红的尴尬,是深深的后悔和宝贵的教训。故事与学生实际生活联系十分紧密,教学中要引导学生联系自己的生活实际体验、理解课文内容,从中受到教育和影响。 由于学生小,时间观念不强,对于如何珍惜时间缺乏感性认识。本文正是一篇十分优秀的文章。教学时要充分利用教材资源创设情境,在读中感悟,从中体会元元的焦急与尴尬,也使这件事成为宝贵的教训,促使每个学生都能对自己严格要求,珍惜时间、科学利用时间。
一、产品名称、商标、型号、厂家、数量、金额、供货时间及数量(上述内容可以按国家工商行政管理局制定的示范文本的表格填写,也可以直接用文字表述)二、质量要求、技术标准、供方对质量负责的条件和期限三、交(提)货的方式四、运输方式及到达地(港)费用的负担五、合理损耗及其计算方法六、包装标准、包装物的供应和回收七、验收标准、方法及提出异议的期限八、随机备品、配件工具数量及供应方法九、结算方式及期限十、担保
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 10.4 用样本估计总体 *创设情境 兴趣导入 【知识回顾】 初中我们曾经学习过频数分布图和频数分布表,利用它们可以清楚地看到数据分布在各个组内的个数. 【知识巩固】 例1 某工厂从去年全年生产某种零件的日产记录(件)中随机抽取30份,得到以下数据: 346 345 347 357 349 352 341 345 358 350 354 344 346 342 345 358 348 345 346 357 350 345 352 349 346 356 351 355 352 348 列出频率分布表. 解 分析样本的数据.其最大值是358,最小值是341,它们的差是358-341=17.取组距为3,确定分点,将数据分为6组. 列出频数分布表 【小提示】 设定分点数值时需要考虑分点值不要与样本数据重合. 分 组频 数 累 计频 数340.5~343.5┬2343.5~346.5正 正10346.5~349.5正5349.5~352.5正  ̄6352.5~355.5┬2355.5~358.5正5合 计3030 介绍 质疑 引领 分析 讲解 说明 了解 观察 思考 解答 启发 学生思考 0 10*动脑思考 探索新知 【新知识】 各组内数据的个数,叫做该组的频数.每组的频数与全体数据的个数之比叫做该组的频率. 计算上面频数分布表中各组的频率,得到频率分布表如表10-8所示. 表10-8 分 组频 数频 率340.5~343.520.067343.5~346.5100.333346.5~349.550.167349.5~352.560.2352.5~355.520.067355.5~358.550.166合 计301.000 根据频率分布表,可以画出频率分布直方图(如图10-4). 图10-4 频率分布直方图的横轴表示数据分组情况,以组距为单位;纵轴表示频率与组距之比.因此,某一组距的频率数值上等于对应矩形的面积. 【想一想】 各小矩形的面积之和应该等于1.为什么呢? 【新知识】 图10-4显示,日产量为344~346件的天数最多,其频率等于该矩形的面积,即 . 根据样本的数据,可以推测,去年的生产这种零件情况:去年约有的天数日产量为344~346件. 频率分布直方图可以直观地反映样本数据的分布情况.由此可以推断和估计总体中某事件发生的概率.样本选择得恰当,这种估计是比较可信的. 如上所述,用样本的频率分布估计总体的步骤为: (1) 选择恰当的抽样方法得到样本数据; (2) 计算数据最大值和最小值、确定组距和组数,确定分点并列出频率分布表; (3) 绘制频率分布直方图; (4) 观察频率分布表与频率分布直方图,根据样本的频率分布,估计总体中某事件发生的概率. 【软件链接】 利用与教材配套的软件(也可以使用其他软件),可以方便的绘制样本数据的频率分布直方图,如图10-5所示. 图10?5 讲解 说明 引领 分析 仔细 分析 关键 语句 观察 理解 记忆 带领 学生 分析 25
一、教材的地位与作用 本节主要学习一元一次不等式组及其解集的概念,并要求学生会用数轴确定解集。它是一元一次不等式的后续学习,也是一种基本的数学模型,也为下节和今后解决实际生产和生活问题奠定了坚实的知识基础。另外,整个学习的过程中数轴起着不可替代的作用,处处渗透着数形结合的思想,这种数学思想会一直影响着学生今后数学的学习。二、学情分析从学生学习的心理基础和认知特点来说,学生已经学习了一元一次不等式,并能较熟练地解一元一次不等式,能将简单的实际问题抽象为数学模型,有一定的数学化归能力。但学生将两个一元一次不等式的解集在同一数轴上表示会产生一定的困惑。这个年龄段的学生,以感性认识为主,并向理性认知过渡,所以,本节课的设计是通过学生所熟悉的问题情境,让学生独立思考,合作交流,从而引导其自主学习。
由于题目较简单,所以学生分析解答时很有信心,且正确率也比较高,同时也进一步体会到了借助“线段图”分析行程问题的优越性.六、归纳总结:活动内容:学生归纳总结本节课所学知识:1.会借线段图分析行程问题.2.各种行程问题中的规律及等量关系.同向追及问题:①同时不同地——甲路程+路程差=乙路程; 甲时间=乙时间.②同地不同时——甲时间+时间差=乙时间; 甲路程=乙路程.相向的相遇问题:甲路程+乙路程=总路程; 甲时间=乙时间.目的:强调本课的重点内容是要学会借线段图来分析行程问题,并能掌握各种行程问题中的规律及等量关系.引导学生自己对所学知识和思想方法进行归纳和总结,从而形成自己对数学知识的理解和解决问题的方法策略.
(2)理解诗意。(告诉方法,引导自学)①同学们通过诗题就知道了诗的内容了,太棒了,谁能告诉我诗人会看到什么样的景象?(指名回答,学生互相补充纠正)明确:瑟瑟(形容未受到残阳照射的江水呈现的青绿色)、可怜(可爱)、真珠(珍珠)②同学们描述的都很漂亮,我们在翻译诗句意思的时候一定要跟诗句结合起来,不能增加诗中没有的内容,也不能删减诗中原有的内容。在这个基础上,谁能再说说诗句的意思?(指名答,课件展示) ③白居易在诗中这么描绘,是不是真实的呢?有同学说真实,因为真的见到过这样的景象,也有同学表示不理解,很棒,学贵质疑,我们来看看这些图片,说说我们的老朋友写的准不准确?(课件展示) (3)分析诗歌。(引导提示) ①引导背诵。合上课本,我们现在跟着白居易一起,我们在傍晚的时候来到了江边,首先看到了什么?用诗句回答(一道残阳铺水中),我们往下看江面,江面的景象是什么样的?(半江瑟瑟半江红),这样的场面让我们留恋了一会,太阳下去了,夜晚到来了,我们欣赏着风光,觉得这夜晚怎么样?(可怜九月初三夜),可爱的夜晚,露水晶莹像珍珠,月儿弯弯像弓,诗人脱口而出(露似真珠月似弓)。
尊敬的各位评委、老师:大家好!1、说课内容:我今天说课的内容是九年义务教育实验教材北师大第四版小学数学一年级上册的内容《一共有多少》。2、教材分析:《一共有多少》是北师大版一年级上册第三单元第一节的内容。是学生第一次接触数学运算,在此之前学生已经对数字有了一定的认识,加上自身的经验积累对学习本节知识也有很大的帮助。3、学生分析:学生在学习之前对加法应该都有比较简单的认识,因为加法在我们的日常生活中是一种非常常见的数学运算方法,学生对此有一定的情感体验,因此对于这节课的学生是非常有帮助的。但是每个学生的生活背景,知识经验不同,每个同学接受知识的能力也有所差别,因此我会顾及到每个学生。通过合作交流、自主探索培养学生沟通能力以及对数学的浓厚兴趣。
为了进一步让学生掌握数数的规律,我把孩子们刚才数过的一些事物按照从小到大的顺序排列(多媒体课件),并要求学生再数一数,数完后再让他们读一读。这个环节的设计自始至终都让孩子自己去观察、动脑,主动参与到和他人的合作交流之中,在找、数和说的过程中探究新知,学会“一个一个地按顺序数数”。第三个环节:综合实践、学以致用。为了体现数学来于生活,用于生活的理念。首先,我出示了一些生活中孩子感兴趣的事物,要求孩子们正确地数出,并用数字来正确表述。此环节中,课件中所出示的图片与相应的数字一一对应,我让孩子们依次输出后,再指名同学用鼠标拖进正确的数字,孩子们觉得又新奇又好玩,纷纷要求上来试试,参与积极性非常之高。这是一个寓教于乐的环节,此环节中即让学生利用了和巩固新课中总结的新知识,又让学生在跃跃欲试的热情中感受到玩中学的乐趣。
(1)我们比较铅笔的长度,可以说这支铅笔长些、那只铅笔短些;如果我们比较两名同学的身高,应该怎么说?(引导学生说出“高矮”)(板书:高矮)(2)(请两位身高相差较大的同学站起来)谁比较高?谁比较矮?(3)(请两位身高相差不大的同学站起来)能不能一眼看出来,谁比较高,谁比较矮?你有什么方法可以比较出他们两个谁比较高?(小组讨论)(4)小组汇报(5)现在我们来玩一个排队的游戏,四人小组按照从高到矮的顺序排队。(6)练习一 7、8、 4、小结:今天我们学了比较长短、比较高矮的方法。其实除了我们今天所说的方法之外,还有很多种方法,我希望同学们多动动脑筋,想出更多更好的方法。教学反思:在学习《长短、高矮》时,通过老师和学生、学生与学生比高矮,利用手边的铅笔、尺等来比长短,使学生理解长短、高矮是相比较而言的。这些事例是学生身边的,学生看的见、有体验、说的出来、易于理解的。因此,学生学起来容易,而且能够正确的加以运用。
[在学生数的过程中再加强点数的指导,同时有意识的培养学生按顺序数数。另外,在数六朵花、八棵树、九名女生、十名男生的时候,除了 1 个 1 个地数以外,还可以引导学生 2 个 2 个地、3 个 3 个地、4 个 4 个地、5 个 5 个地数数,为后面学习 10 以内各数打基础。] (2)小组进行交流。 再从 1~10 数一数物体的个数。 (3)认一认。 师:你认识这些数吗?边指边读给大家听听。 生:边指 1~10 各数边读一读。 三、巩固练习 1.结合实物,开展数数活动。 (1)按要求数出下面物体的个数。 师:同学们刚才数得真不错!你们愿不愿意数一数自己文具盒中有几支铅笔呀? 生:数出自己文具盒中有几支铅笔并汇报。 师:请同学们数一数你的书包里共有几本书? 生:数出自己书包里共有几本书并汇报…… (2)自由数物体的个数。 师:你还想数哪些物体的个数?和同桌的小伙伴交流一下。
目的:进一步理解追击问题的实质,与课程引入中的灰太狼追喜羊羊故事呼应,问题得到解决。环节三、运用巩固活动内容:育红学校七年级学生步行郊外旅行,1班的学生组成前队,步行速度为4千米/小时,3班的学生组成后队,步行速度为6千米/小时,1班出发一个小时后,3班才出发。请根据以上的事实提出问题并尝试回答。问题1:3班追上1班用了多长时间 ?问题2:3班追上1班时,他们离学校多远?问题3:………………目的:给学生提供进一步巩固建立方程模型的基本过程和方法的熟悉机会,让学生活学活用,真正让学生学会借线段图分析行程问题的方法,得出其中的等量关系,从而正确地建立方程求解问题,同时还需注意检验方程解的合理性.实际活动效果:由于题目较简单,所以学生分析解答时很有信心,且正确率也比较高,同时也进一步体会到了借助“线段图”分析行程问题的优越性.
探究点三:列一元一次方程解应用题某单位计划“五一”期间组织职工到东湖旅游,如果单独租用40座的客车若干辆则刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)解析:(1)先设该单位参加旅游的职工有x人,利用人数不变,车的辆数相差1,可列出一元一次方程求解;(2)可根据租用两种汽车时,利用假设一种车的数量,进而得出另一种车的数量求出即可.解:(1)设该单位参加旅游的职工有x人,由题意得方程x40-x+4050=1,解得x=360,答:该单位参加旅游的职工有360人;(2)有可能,因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人,正好坐满.方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程再求解.
先让学生自己总结,然后互相交流,得出结论。解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。板书:解一元一次方程一般步骤:1、 去分母-----等式性质22、 去括号----去括号法则3、 移项----等式性质14、 合并同类项----合并同类项法则5、 系数化为1.----等式性质2【课堂练习】练习:解下列一元一次方程解方程: (2) ;思路点拔:(1)去分母所选的乘数应是所有分母的最小公倍数,不应遗漏。(2)用分母的最小公倍数去乘方程的两边时,不要漏掉等号两边不含分母的项。(3)去掉分母后,分数线也同时去掉,分子上的多项式用括号括起来。回顾解以上方程的全过程,表示了一元一次方程解法的一般步骤,通过去分母—去括号—移项—合并同类项—系数化为1等步骤,就可以使一元一次方程逐步向着 =a的形式转化。
小明说:“我姐姐今年的年龄是我去年的年龄的2倍少6,”已知姐姐今年20岁,问小明今年几岁?若取小明今年为x岁,则依据下面的等量关系式列方程:姐姐今年的年龄=小明去年年龄的2倍-6.得2(x-1)-6=20.例5解方程-3(x+1)=9总结:根据乘法分配律和去括号法则(括号前面是“+”号,把“+”号和括号去掉,括号内各项都不改变符号;括号前面是“-”号,把“-”号和括号去掉,括号内各项都改变符号)去括号时要注意:1、 不要漏乘括号内的任何一项;2、若括号前面是“-”号,记住去括号后括号内各项都变号.习题训练:解方程,如课本P122练一练1,P113练一练2等.思维拓展,解简单的应用题,如课本P123练一练3或补充一些题,如含小括号、中括号、大括号的方程(这方面课本安排几乎没有,只限浅显问题,教师不必深究)
解:设每张300元的门票买了x张,则每张400元的门票买了(8-x)张,由题意得300x+400×(8-x)=2700,解得x=5,∴买400元每张的门票张数为8-5=3(张).答:每张300元的门票买了5张,每张400元的门票买了3张.方法总结:解题的关键是熟练掌握列方程解应用题的一般步骤:①根据题意找出等量关系;②列出方程;③解方程;④作答.三、板书设计本节课的教学先让学生回顾上一节所学的知识,复习巩固方程的解法,让学生进一步明白解方程的步骤是逐渐发展的,后面的步骤是在前面步骤的基础上发展而成的.然后通过一个实际问题,列出一个有括号的方程,大胆放手让学生去探索、猜想各种解法,去尝试各种解题的途径,启发学生在化归思想影响下想到要去括号.
1、突出问题的应用意识.教师首先用一个学生感兴趣的实际问题引人课题,然后运用算术的方法给出解答。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习.2、体现学生的主体意识.本设计中,教师始终把学生放在主体的地位:让学生通过对列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;让学生通过合作与交流,得出问题的不同解答方法;让学生对一节课的学习内容、方法、注意点等进行归纳.3、体现学生思维的层次性.教师首先引导学生尝试用算术方法解决间题,然后再逐步引导学生列出含未知数的式子,寻找相等关系列出方程.在寻找相等关系、设未知数及作业的布置等环节中,教师都注意了学生思维的层次性.4、渗透建模的思想.把实际间题中的数量关系用方程形式表示出来,就是建立一种数学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力.
两道例题,第一道题师生共同分析,第二道题学生自己分析。部分学生在运用方程解答问题时,等量关系的寻找还是有困难,规范解题不够合理,仍需在作业过程中教师给予适当的指导。四、课堂小结这节课我们学习了有关打折销售的知识,其实类似的问题我们小学也遇到过,今天在分析实际问题时又用到了列表法,通过这节课的学习,谈谈你在知识方面的收获。提示学生通过对《日历中的方程》《我变高了》以及本节《打折销售》学习还有以往经验,让学生分组讨论,用一元一次方程解决实际问题的一般步骤是什么?目的:让学生进一步体会方程的作用,这里教师又提到学生的小学学习,目的是想提示学生,将今天的方程解法与小学学过的算术方法相对比。此活动的目的是使学生不再处于被动状态,而成为积极的发现者。
某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为( )A.1.2×0.8x+2×0.9(60+x)=87B.1.2×0.8x+2×0.9(60-x)=87C.2×0.9x+1.2×0.8(60+x)=87D.2×0.9x+1.2×0.8(60-x)=87解析:设铅笔卖出x支,根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x支铅笔的售价+(60-x)支圆珠笔的售价=87,据此列出方程为1.2×0.8x+2×0.9(60-x)=87.故选B.方法总结:解题的关键是读懂题意,设出未知数,找到题目当中的等量关系,最后列方程.三、板书设计教学过程中,通过对多种实际问题情境的分析,感受方程作为刻画现实世界有效模型的意义,通过观察、归纳一元一次方程的概念,使学生在分析实际问题情境的活动中体会数学与现实的密切联系.
方法总结:让利10%,即利润为原来的90%.探究点三:求原价某商场节日酬宾:全场8折.一种电器在这次酬宾活动中的利润率为10%,它的进价为2000元,那么它的原价为多少元?解析:本题中的利润为(2000×10%)元,销售价为(原价×80%)元,根据公式建立起方程即可.解:设原价为x元,根据题意,得80%x-2000=2000×10%.解得x=2750.答:它的原价为2750元.方法总结:典例关系:售价=进价+利润,售价=原价×打折数×0.1,售价=进价×(1+利润率).三、板书设计本节课从和我们的生活息息相关的利润问题入手,让学生在具体情境中感受到数学在生活实际中的应用,从而激发他们学习数学的兴趣.根据“实际售价=进价+利润”等数量关系列一元一次方程解决与打折销售有关的实际问题.审清题意,找出等量关系是解决问题的关键.另外,商品经济问题的题型很多,让学生触类旁通,达到举一反三,灵活的运用有关的公式解决实际问题,提高学生的数学能力.