(一)观图激趣、设疑导入 师:同学们,今天和老师一起完成一个知识大比拼的游戏,(PPT课件出示)准备好了吗?1、填空。15∶3=( )∶( )2∶3=( )÷( )0.2=( )∶2=( )÷62、根据比例的基本性质,把下列各比改写为乘法等式。3:8=15:40 x:4=1:2生:准备好了。师:现在我们开始。师:今天和老师学习怎样解比例。(板书课题:解比例)【设计意图】这种方法的导入,让学生更快、更集中注意力奔向主题,没有渲染的成分,简单实用。(二)探究新知1、自学解比例的意义师:阅读教材第42页,理解什么叫做解比例。生:求比例中的未知项叫做解比例。教师板书:求比例中的未知项叫做解比例。2、学习例2,应用比例的基本性质解比例。(1)出示例2的PPT课件。法国巴黎的埃菲尔铁塔高度约320 m。北京的世界公园里有一座埃菲尔铁塔的模型,它的高度与原塔高度的比是1∶10。这座模型高多少米?(2)理解题意,弄清模型的高度∶原塔高度=1∶10。师:同学们,你是怎样理解题目中1∶10的?生:题目中告诉我们1∶10是埃菲尔铁塔模型的高度与原塔高度的比。师:你能根据题意写出比例关系式吗?生:根据题意列比例关系式:模型的高度∶原塔高度=1∶10。师:这个关系式用数字该怎样表示?生:老师,在这个比例中我只知道三个数字,模型的高度的数量我不知道是几呀?师:这位同学观察得很仔细,哪位同学愿意帮助他解决这个问题?生:老师我想用字母x代替模型高度的数量,您看可以吗?师:好的,你的想法非常的好,也很正确!师:题目中告诉我们原塔高度是多少?生:320 m。
(一)复习导入 1. 师:同学们,你们经常去超市吧?超市里有时候会有打折的活动,你知道什么是打折吗?(课件第2张)生:商店有时降价销售商品,叫做打折扣销售,俗称“打折”。2.你知道打折的含义吗?几折就表示十分之几,也就是百分之几十。比如打七折,就是按照原价的十分之七出售,也就是按原价的70%出售。这节课我们就来学习有关折扣的知识。(课件第3张)【设计意图】联系学生的生活实际引入课题,引起学生学习兴趣,使学生体会到生活中处处有数学。(二)探究新知 1、探究折扣的含义,计算打折后的价钱。(课件第3张)(1)星期天,小雨和爸爸来到商场买东西,正好赶上打折活动。小雨问爸爸:什么叫做“八五折”?你能回答小雨的问题吗?生1:“八五折”就是按原价的85%出售。你知道“九折”是多少吗?生2:“九折”就是按原价的90%出售。(2)爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?你会列式吗?(课件第4张)小组合作:你是怎样想的?说说你的思考过程。(课件第5张)(3)汇报交流:生1:把原价看做单位“1”,打八五折就是按原价的85%出售。(课件第6张)生2:现价=原价×折扣,求现价,做乘法。生3:180×85%=153(元)答:买这辆车用了153元。2、探究计算打折后便宜了多少钱的方法。爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少元?(课件第7张)(1)小组讨论:先求什么?再求什么?说说你的思考过程。生1:我先求现价是多少,再求比原价便宜了多少元。(课件第8张)列式为:160×90%=144(元)160-144=16(元)答:比原价便宜了16元。生2:我先求现价比原价便宜了百分之几,再求比原价便宜了多少元。(课件第9张)列式为:160×(1-90%)=160×10%=16(元)
(一)观图激趣、设疑导入 出示课件的第一张幻灯片。师:老师这里有三道题哪位同学会做?1、已知路程和时间,怎样求速度?2、已知总价和数量,怎样求单价?3、已知工作总量和工作时间,怎样求工作效率?生1:速度=路程÷时间。生2:单价=总价÷数量。生3:工作效率=工作总量÷工作时间。师:同学们可真棒!这节课我们就来研究这些数量间的一些规律和特征。你们准备好了吗?生:准备好了!(板书:成正比例的量)【设计意图】引发学生学习的兴趣,唤起学生已有的只是经验,更好地进行新旧知识的结合,也有利于引导学生发现数量关系内在的规律。(二)探究新知(PPT课件出示例1)文具店有一种铅笔,销售的数量与总价的关系如下表。 数量/支12345678…总价/元3.5710.51417.52124.528…观察上表,回答下面的问题。(1)表中有哪两种量?(2)总价是怎样随着数量的变化而变化的?(3)相应的总价与数量的比分别是多少?比值是多少?1.探究数量与总价两个量之间的关系。师:仔细观察这张表格,它为我们提供了哪些数学信息?生:给我们提供了文具店销售彩带的数量是1,2,3,4,5,6,7,8米,总价分别是:3.5, 7,10.5,14,17.5,21,24.5,28元。师:表中有哪两种量?生:有数量和总价两种量。师:总价是怎样随着数量的变化而变化的?生:总价是随数量的增加而增加的。师:相应的总价与数量的比分别是多少?比值是多少?生1:=3.5 =3.5 =3.5 =3.5 =3.5 =3.5 =3.5 =3.5生2:相对应的总价和数量的比的比值是一定的。师:总价与数量的比值表示什么?
2、试做例题,掌握转化方法明确转化原理后,让学生试算例题。在试做的基础上引导学生进行观察比较,抽象出转化时小数点的移位方法,最后概括总结出移位的法则。具体做法如下:1、我认为小数除法如果按照教材按部就班教学有点不合理的,不利于学生从整体上把握小数除法,不利于学生对知识的建构。因此,我选择了重组教材。(把例5例6有机的结合在一起的同时也新增加了一个例题,那就是被除数小数位数比除数的小数位数多)。例5、例6和新增加例题的教学,引导学生概括总结出转化时移位的方法,同时在此基础上归纳出除数是小数的除法计算法则。在得出计算法则后,还要注意强调:(1)小数点向右移动的位数取决于除数的小数位数,而不由被除数的小数位数确定。(2)整数除法中,两个数相除的商不会大于被除数,而在小数除法中,当除数小于1时,商反而比被除数大。
在学习本课内容以前,学生已经系统地学习了整数四则混合运算和小数四则计算,为本节课内容的学习打下了基础,由于小数四则混合运算的运算顺序同整数四则混合运算的运算顺序完全一样,针对这一点,本课教学确定的教学目的是使学生熟记小数四则混合运算顺序,提高计算能力。使学生熟练地掌握小数四则混合运算的运算顺序,正确、迅速地进行小数四则混合式题的运算,是本课的教学重点。教学难点是:1.能否正确把握运算顺序。2.能否正确标明根据以上教学目的,为了更好地突出重点,突破难点,在教学中遵循大纲的要求,从简单入手。例1是最简单的两步计算题,让学生熟悉一下运算顺序。再过渡到较复杂的问题。例2是三步计算带小括号的较复杂的四则混算题,在运算过程中出现了除不尽的情况,应说明计算过程中,当除得的商超过两位小数时,一般只需保留两位小数,再进行计算。最后进入到教学重点、难点阶段。
一、说教材“植树问题”是人教版新课程标准实验教材五年级上册“数学广角”106页的内容。本节课主要探讨关于在一条线段植树的问题,只要教过这节课的老师都知道,即使在一条线段上植树也有不同的情形:本节课主要讲的例1,主要研究两端都要栽的植树问题,也是这一系列内容的起始课,教材以学生比较熟悉的植树活动为线索,让学生选用画线段图的方法来探究栽树的棵数和间隔数之间的关系,经历猜想、试验、推理等数学探索的过程,并启发学生透过现象发现其中的规律,抽取出数学模型,再利用规律回归生活,解决生活实际问题。大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。为此,本课制定了三个教学目标:
2. 教材分析这节课的教学是学生在掌握行程问题基本数量关系的基础上进行的,本课教材给学生提供了“骑车”的情境,通过简单的路线图等方式呈现了速度路程等信息。然后要求学生根据这些信息去解决2个问题:①让学生根据两辆车的速度信息进行估计,在哪个地方相遇。②用方程解决相遇问题中求相遇时间的问题。3. 学情分析学生已经在三年级接触了简单的行程问题,四年级上册,学生就真正的开始学习速度、时间、路程之间的关系,并用三者的数量关系来解决行程问题。而本节课正是运用这些学生已有的知识基础和生活经验进行相遇问题的探究。4、教学目标从知识与技能、过程与方法、情感态度价值观的三维目标出发,制定了以下的目标:①使学生理解相遇问题的意义及特点。②经历解决问题的过程,提高收集信息、处理信息和建立模型的能力。③会分析简单实际问题中的数量关系,提高用方程解决简单的实际问题的能力。
(二)、操作--“空间与图形”学习的基本途径 皮亚杰曾说:“数学的抽象仍是属于操作性质的,它的发生发展要经过连续不断的阶段。而其最初的来源又是十分具体的行动。”因小学生的年龄特点和认知规律(动作感知--建立表象--形成概念),决定小学生的数学学习离不开操作感知这一基本途径。 本案例中,通过让学生折一折体会长方形、正方形边的特征;让学生用几个相同的长方形、三角形拼一拼,感受图形从简单到复杂的变化规律;最后一题让学生自己画一画,看看需要几个长方形等。教师积极创造条件,组织学生动手操作,以此来参与知识的形成过程,使他们在亲身体验和探索中认识和感悟图形的特征,理解和掌握图形拼组的规律所在,并发展学生的思维,提高实践能力。如果只视学生为接受知识的容器,向学生灌输知识,这节课几分钟就可以搞定,但是学生对长方形对边相等、正方形四条边相等,图形拼组中的很多细节都会是干巴巴的,所学的知识必然是有“形”无“神”的死知识。
一、说教材“正比例和反比例的意义”这部分内容着重使学生理解正反比例的意义。正、反比例关系是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以应用它解决一些简单的正、反比例方面的实际问题。二、说教学目标1.使学生理解正、反比例的意义,能够初步判断两种相关联的量是否成比例,成什么比例.2.通过观察、比较、归纳,提高学生综合概括推理的能力.三、说教学重点理解正反比例的意义,掌握正反比例的变化的规律.四、说教学难点理解正反比例的意义,掌握正反比例的变化的规律.五、说学情在教学了正比例知识后,大部分学生都明白了如何判断两个量是不是正比例,在做题时,学生出错的可能性不大,主要在于语言表达的完整性和科学性上。可是一旦教授了反比例的知识之后,学生开始混淆两者了!不知道是把两个量相“乘”还是相“除”!这是由于学生对于“正”和 “反”的理解不够到位。
1.说教材《比例的意义和基本性质》是人教版小学数学六年级下册第四单元的内容,这部分内容是在学习了比的有关知识并掌握了一些常见的数量关系的基础上进行教学的,是前面“比的知识”的深化,也是后面学习解比例知识的基础,并为学习比例的应用,特别是为正、反比例及其应用打好基础。比例的知识在生活和生产中有着广泛的应用,所以本节课的知识就显得尤为重要。2.教学目标我以《新课程标准》为依据,结合小学数学教材编排的意图和学生的实际情况,拟定以下教学目标:(1)知识与技能目标:使学生理解并掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别。(2)能力目标:培养学生自主参与的意识和主动探究的精神,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。 (3)情感与态度目标:在教学中渗透爱国主义教育,培养学生善于观察、勤于思考、乐于探究的学习习惯。3.教学重点、难点教学重点:理解比例的意义与探究基本性质。教学难点:运用比例的意义或性质判断两个比能否组成比例,并能正确地组成比例。
一、说教材:《军神》是九年义务教育第十册第四单元的一篇精讲课文,这一单元的内容体现了战争年代英雄人物的崇高品质和老一辈革命家的坚强的革命意志,表达了作者强烈的思想感情。本单元重点训练项目是“阅读要有一定的速度”。因此,教学本单元课文的重点,不仅要引导学生理解课文内容,体会作者所表达的思想感情,而且要围绕“阅读要有一定的速度”培养学生阅读能力。《军神》是这一单元的一篇课文,它通过记叙刘伯承在重庆治疗受伤的眼睛时,拒绝使用麻药的事,表现了刘伯承钢铁般的意志,表达了作者对刘伯承的敬佩和赞扬的感情。课文是按事情发展顺序记叙的,以沃克医生的神态、情绪变化为线索,先写沃克医生给刘伯承检查眼睛伤势,发现这个“邮局职员”是个军人;接着写沃克医生给刘伯承做手术,刘伯承拒绝使用麻药;最后写手术后沃克医生对刘伯承的钦佩。
三、说学情:本课领会方志敏同志清正廉洁这一美德并不困难。但是学生的生活阔别了贫苦,在明白“贫苦”对于革命的意义还会有些空洞化、观点化,这将成为学生学习课文的难点。四、说教法和学法:1.说教法:小组讨论法:针对老师提出的题目,学生举行分组讨论,促使学生在相助中解决题目,培养学生联合协作的能力。朗读感悟法:朗读是一种非常重要的教学要领,课文中方志敏与“士兵”的对话内容以及感情变革写得非常好,很得当,分脚色朗读,在朗读中感觉方志敏同道甘于贫苦、矜持不苟的崇高革命情操。2.说学法:高年级的学生应注意培养学生的自学本领,送还学生自主学习权,我引导学生利用以下要领进行学习:自主探究法、分析归纳法、总结反思法。通过题目导学、学法引导、知识总结等引导学生在课堂上积极学习。
非常清楚,共有6个自然段,第一个自然段是总写手指的特点,2——5自然段是分写五个手指的不同特点,最后一个自然段又总写,点明了文章的中心。文章的语言朴实又富有风趣,采用了拟人化的手法将手指的不同特点写得淋漓尽致。这样的写作顺序及写作方法是学生学习的一个重点。这是一篇略读课文,可用一个课时完成教学。根据以上教材的特点以及新课标所特别关注的学生的“情感态度与价值观、过程与方法、知识与能力”这三个维度的理念,我制定了以下教学目标:1、会读带有拼音的生词,能联系上下文理解词语“窈窕、堂皇、渺小、附庸、养尊处优”的意思;2、能正确、流利、有感情地朗读课文,了解五根手指的不同特点,了解作者描写手指的写作顺序及写作方法。这也是本文的教学重点。3、体会到任何事物都各有所长各有所短的道理,以及团结合作的重要性;这也是本文的教学难点。
一、说教材《跳水》是小学语文五年级下册的一篇精读课文。训练主题是:①抓住文章中的重点词句,体会其表达效果。②揣摩文章表达的顺序,学习基本的表达方法。本单元训练主题与各单元文化主题的融合:抓关键词句,品读文字中的生活,感受生活中智慧的灵光。《跳水》讲述了发生在一艘外国帆船上发生的事. 一只猴子把船长儿子戴的帽子挂到了桅杆顶端最高的横木一头,孩子为了追回帽子,走上橫木,在万分危急的时刻船长急中生智,命令儿子跳水,使孩子转危为安。教材的编排意图是:在读懂课文的基础上,学习船长在危急中,冷静机智和果断处理问题的方法和了解作者记叙一件事情经过的方法。本篇课文情节惊险,扣人心弦,易于激起小学生的阅读兴趣,形象逼真的教材插图给人以身临其境之感。
教后反思本节课给学生创设了良好的活动空间,把学生实际生活中听说过的见到的平均分现象展示给学生看,把生活和数学联系起来,在学生感受“同样多”的基础上概括出什么叫平均分。揭示平均分这一数学知识在生活中的应用,之后突出了学生三次实际操作。第一次,小组同学互相分水果,重视学生分的结果。体会感受“平均分”的含义。第二次,重视分法:15个橘子平均分成5份。体现了学生对物品的不同分法,建立了平均分的概念。第三次,分矿泉水,通过份数变化,观察分的就结果,深刻体会“平均分”,为认识除法积累丰富的知识。为学生营造探索的空间。第二课时:平均分的认识(二)教学内容巩固“平均分”。课本第15页的例题3。教学目标1.巩固“平均分”的概念,知道平均分就是每一份分得结果同样多。
三维目标1.知识与技能(1)让学生经历用7、8、9的乘法口诀求商的过程,掌握用乘法口诀求商的一般方法。(2)使学生会综合应用乘、除法运算解决简单的或稍复杂的实际问题。2.过程与方法在解决问题的过程中,让学生初步尝试运用分析、推理和转化的学习方法。3.情感、态度与价值观让学生在学习中体验到成功的喜悦,增强学生学好数学的信心。重、难点与关键1.重点:使学生熟练应用乘法口诀求商,经历从实际问题中抽象出一个数是另一个数的几倍的数量关系的过程,会用乘法口诀求商的技能解决实际问题。2.难点:应用分析推理将一个数是另一个数的几倍是多少的数量关系转化为一个数里面有几个另一个数的除法含义。3.关键:以解决问题为载体,培养学生的数感。
(4)列式计算:94—34=60(个)60—29=31(个)或34+29=63(个)94-63=31(个)让学生列出综合算式,要他们正确的使用小括号。列好后要求学生说出每一步表示的意义。94-34-29或94-(34+29)b.教科书第7页练习一的第3题。让学生自己分析题目的已知条件和问题,然后用两种方法列式解答。58-6-7或58-(6+7)[第2题和第3题是配合例2设计的。教学时先让学生说明图意,然后思考要解决的问题。着重练习如何正确使用小括号,同时对学生进行环保意识的教育。]9.作业安排①.新型电脑公司有87台电脑,上午卖出19台,下午卖出26台,还剩下多少台?(用两种方法解答)②.班级里有22张腊光纸,又买来27张。开联欢会时用去38张,还剩下多少张?③.少年宫新购进小提琴52把,中提琴比小提琴少20把,两种琴一共有多少把?④.一辆公共汽车里有36位乘客,到福州路下去8位,又上来12位,这时车上有多少位?
1,猜一猜 师:这里有一个盒子,盒子里有一朵花,谁能猜出这朵花是什么颜色的?盒子里的花儿的颜色是确定的,为什么你们会有那么多不同的答案? ……师:好,老师给一个提示:红色和黄色。会是什么颜色呢?师:要想准确猜出球的颜色,有一个统一的答案,怎么办? 师:满足你的愿望,第二个提示:不是红色的。2、猜球游戏: 小朋友看,老师这里有一个白色和一个黄色的乒乓球,现在把它们放到盒子里,我们一起来玩一个猜一猜的游戏,好吗? 师:我摸出其中一个,你猜猜是什么颜色的球呢?师:猜得准吗?老师给你们一些提示吧:我摸出的不是黄球,那我摸出的是什么颜色的球?你是怎么猜的?师:那盒子里面的是什么颜色的球呢?你是怎么猜的?小朋友们很聪明,根据老师的提示能准确地判断出球的颜色,这种方法就是我们今天要学习的简单的推理。
问题情景,导入新课1、多媒体课件出示例1主题图,问:图上的小朋友在干什么?你们测量过体重吗?测量了几次?读一年级刚入学时,你测量的体重是多少?(学生自由汇报各自的体重情况)怎样才能让大家一看就明白我们班所有人的体重情况呢?二、活动体验,探究新知1、电脑出示统计表(1): 体重(千克)15以下16~20 21~25 26~30 31以上人数 师:现在我们就用“正”字记录法来统计一下刚入学时的体重(集体活动)2、活动结束后,师生共同将收集的数据整理后填入表格中。3、二年级时,我们的体重有什么变化呢? 电脑出示统计表(2) 体重(千克)15以下16~20 21~25 26~30 31以上人数 集体进行统计活动,并将结果填入表中。4、讨论:如果想把两年的体重数据填入一个统计表中,该如何表示呢? 学生讨论后,在黑板上出示表格(3):(单位:千克)
一、游戏活动激趣,认识对称物体1、游戏“猜一猜”:课件依次出示“剪刀、扫帚、飞机、梳子”的一部分,分男、女生猜。2、认识对称物体:1)师质疑:为什么女生猜得又快又准呢?2)小结:像这样两边形状、大小都完全相同的物体,我们就说它是对称物体。(板书:对称)二、猜想验证新知,认识轴对称图形(一)初步感知对称图形1、将“剪刀、飞机、扇子”等对称物体抽象出平面图形,让学生观察,这些平面图形还是不是对称的。2、师小结:像这样的图形,叫做对称图形。(板书:图形)(二)猜想验证对称图形1、猜一猜:出示“梯形、平行四边形、圆形、燕尾箭头”等平面图形,让学生观察。师:这些平面图形是不是对称图形?怎样证明它们是不是对称图形?