(2)相似多边形的对应边的比称为相似比;(3)当相似比为1时,两个多边形全等.二、运用相似多边形的性质.活动3 例:如图27.1-6,四边形ABCD和EFGH相似,求角 的大小和EH的长度 .27.1-6教师活动:教师出示例题,提出问题;学生活动:学生通过例题运用相似多边形的性质,正确解答出角 的大小和EH的长度 .(2人板演)活动41.在比例尺为1﹕10 000 000的地图上,量得甲、乙两地的距离是30 cm,求两地的实际距离.2.如图所示的两个直角三角形相似吗?为什么?3.如图所示的两个五边形相似,求未知边 、 、 、 的长度.教师活动:在活动中,教师应重点关注:(1)学生参与活动的热情及语言归纳数学结论的能力;(2)学生对于相似多边形的性质的掌握情况.三、回顾与反思.(1)谈谈本节课你有哪些收获.(2)布置课外作业:教材P88页习题4.4
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x) (100+100x)(0≤x≤2)]将函数关系式y=x(20-2x)(0 <x <10=化为:y=-2x2+20x (0<x<10)…(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D (0≤x≤2)…(2)三、观察;概括1.教师引导学生观察函数关系式(1)和(2),提出问题让学生思考回答;(1)函数关系式(1)和(2)的自变量各有几个? (各有1个)(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、归结为:自变量x为何值时,函数y取得最大值。2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数, a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.
我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.
教学目标:1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。2、了解计算一个锐角的正切值的方法。教学重点:理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。教学难点:计算一个锐角的正切值的方法。教学过程:一、观察回答:如图某体育馆,为了方便不同需求的观众设计了多种形式的台阶。下列图中的两个台阶哪个更陡?你是怎么判断的?图(1) 图(2)[点拨]可将这两个台阶抽象地看成两个三角形答:图 的台阶更陡,理由 二、探索活动1、思考与探索一:除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢?① 可通过测量BC与AC的长度,② 再算出它们的比,来说明台阶的倾斜程度。(思考:BC与AC长度的比与台阶的倾斜程度有何关系?)答:_________________.③ 讨论:你还可以用其它什么方法?能说出你的理由吗?答:________________________.2、思考与探索二:
解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.
[教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.
五、活动背景:健康的心灵是我们幸福的源泉,只有接纳自己、喜欢自己、充满自信才有健康的心灵。然而,随着社会的发展,中学生中存在着许多的心理健康问题。为更好地对中学生进行心理健康教育、更好地优化学生的心理素质,促进学生的心理健康成长。更好地引导同学们积极关注自我发展,自觉维护和提升心理健康水平,让同学们的心理朝着阳光健康的方向发展,我们特开展以“心灵护航,快乐成长”为主题的中学生心理健康教育主题班会
教师出示相关校园安全知识。(1)食品安全a. 不到没有卫生许可证的小摊贩处购买食品,选择新鲜和安全的食物;注意查看食品的保质期限、配方等安全信息。b. 养成良好的卫生习惯,饭前洗手。 c. 彻底洗净蔬果;不吃霉变的食物;不吃生食;尽量不吃剩菜剩饭。d. 保持健康的饮食习惯,不把饮料当水喝,不吃烧烤、油炸、烟熏及膨化食品,注意三餐定时定量。(2)人身安全 a.有序进出教室,上下楼梯靠右行,不拥挤或互相推搡。 b.在校园追跑打闹。不爬学校的围墙,门窗、围栏、树木、球架。 c.课外活动和体育锻炼,要按有关安全规则进行。在往返家校的路上,要注意交通安全,行路要严格遵守交通规则。 d.不得携带管制刀具,违禁物品进校园。(3)消防安全 a.不携带易燃、易爆、有毒物品等进入校园。 b.若插座、照明灯、电风扇等电器发生故障,不得私自动手排除,应报告教师或总务处,由学校电工进行故障排除。
教学目标:1.充分认识安全工作的重要意义;2.在学习和生活中注意人生安全、饮食安全、交通安全等;3.进行预防灾害,预防突发事件的教育。教学过程:1.导入:列举出生活中的安全事例。2.安全工作的重要性a 公路上、公共场所的安全事故时有发生,是因为有的人安全意识不强。b 班级举例:学校发生的事故及后果。c 目前学校抓的几项工作。小学生应该注意安全的地方:1.学生讨论。2.集体归纳。(1)人身安全,在校园内或公路上不追逐打闹,不爬围墙,不爬树,不接近有电等危险地点,劳动时,注意安全,不与社会上不三不四的人交往,课外不玩火,不玩水。(2)交通安全,在公路上不追逐打闹,自觉遵守交通规则,交叉路口要注意行人车辆,通过公路要做到一停二看三通过。
《纲要》明确指出:教育内容应“贴近幼儿的生活来选择幼儿感兴趣的事物和问题,有助于拓展幼儿的经验的视野”,幼儿园数学教育不是为纯粹的教育而教育,是一种以幼儿生活为特征的教育,这就要求我们要立足幼儿的生活实际,紧密联系幼儿的生活来开展教育。像我班小朋友午睡起床,常有孩子把鞋子、袜子拿错、穿反。根据小班幼儿年龄特点,我设计了以鞋子、袜子、鞋垫为活动材料的《找朋友》数学活动,引导孩子在原有的生活经验上关注物体的形状、大小、颜色的不同,进行配对。在游戏中自然渗透数学的概念,达到“玩中学,玩中教”的目的。活动的目标对活动起着导向性作用,根据本班幼儿的年龄特点和实际情况,确立了情感、能力等方面的目标.其中有探索认知部分,也有操作部分,具体目标是:1、认识目标:(1)、初步形成“双”的概念,知道一双有两只。(2)、能按鞋子、袜子、鞋垫的外形,颜色,大小等特点进行配对。2、能力目标:发展幼儿的观察力、记忆力、创造力和想象力。3、情感目标:体验与教师、同伴游戏的快乐;初步感受改编儿歌的乐趣,从而激发幼儿的求知欲。
一、组织教学:检查学生用具准备情况二、讲授新课:1、引入阶段:引趣,挂出宇宙飞船,宇航员,飞碟等图案师问:图上的物体是些什么?是用来干什么的?挂出两幅完整的太空,科幻作品。介绍简单的太空知识和人类深索太空奥秘的活动。
(一)旧知回顾(老师提出问题,同学回答。红色部分为学生回答后,老师给出的答案。)1、通过上节课的学习,你知道除了正数还有哪些数?答:1)0和负数。2)0既不是正数,也不是负数。2、用正数和负数表示具有相反意义的量。举例:如果把一个物体向后移动5m,记作移动-5m;那么这个物体向前移动5m,记作移动5m。原地不动,记作移动0m。
教学目标【知识与技能】1.能结合具体图形理解垂直的概念,能经过一点画已知直线的垂线.2.通过画图,理解垂直公理及“垂线段最短”这个公理.3.理解点到直线的距离这一重要概念.4.初步锻炼作图能力,能运用本节的两个公理进行简单的说理或应用.【过程与方法】通过画图探究出两个公理,在不同的情况下过一点作已知直线的垂线,通过看图会找出点到直线的距离,在此基础上深入理解本节的两个公理,进而运用它们进行简单的说理或应用.【情感态度】进一步进行画图、探究、归纳等数学活动,特别强调动手画几何图形,体验数学的严密性、科学性、美观性.
师生互动,课堂小结1.画频数分布直方图的一般步骤:(1)计算最大值最小值的差;(2)决定组距与组数;(3)列频数分布表;(4)画频数分布直方图.2.直方图与条形图的区别:直方图的各长方形通常是连续排列中间没有空隙,长方形的宽表示各组距,高表示频数,它反映的是数据的分布情况;条形图一般不连续排列,中间一般有间隙,长方形的高表示频数,宽没有什么特殊的意义,只表示数据的一种类别.3.频数折线图的各点的位置:起点是向前多取一个组距,在横轴上取这个组距的中点即可,中间各点取各小长方形顶部宽的中点(组中值),末点是向后多取一个组距,在横轴上取这一个组距的中点即可.
课后反思:由于学生已初步具备认读生字的能力,教学时我把主动权交给学生,有利于调动学生识字的积极性和创造性,培养学生识字的能力。再者,我严格要求学生按照笔画顺序来书写,同时还注意充分发挥学生学习的主动性与创造性,鼓励他们运用各种方法来识记生字。另外学生边说笔画名称边书空,增加学生对生字的记忆力,然后我对关键笔画进行点拨,最后让学生描红、临写。我在巡视过程中适当指点,并给学生写得好的字画个小红星,这对学生起到较大的激励作用。我在学生猜谜底时通过表演的形式,不仅激发了学生的兴趣,还能给学生更加形象生动的视觉刺激,会教学目的很好的完成。
1.生认真倾听老师范读,边听边思考:课文有几个自然段,写了有关粽子哪些方面的内容呢? 2.生回答老师提出的问题。3.生读第一自然段,并思考这一段的主要内容。 4.全班交流第一自然段的内容。5.观察田字格中生字“午”、“节”的笔顺和所占的位置,边描红,小组内讨论该注意的问题。6.展示并交流书写作品。7.生自读第2自然段,边读边完成老师提出的任务,组内讨论交流。8.全班交流:第2自然段主要写了端午粽哪些方面的内容呢?9.生朗读以下词语:箬竹叶糯米枣清香又黏又甜10.朗读第2自然段,在老师的引导下,准确找出相关句子:(1)外婆的粽子是用这些材料包成的:粽子是用青青的箬竹叶包的,里面裹着白白的糯米,中间有一颗红红的枣。(2)煮熟的粽子,清香扑鼻:外婆……一股清香。(3)外婆包的粽子味道美极了:剥开粽叶,……又黏又甜
细读课文,理解内容。(一)学习课文第一小节。1.(出示:一条小毛虫趴在一片叶子上,用新奇的目光观察着周围的一切:)(强调冒号)师读。这个一切是指——2.?“新奇的目光”是一种怎样的目光?你能换一个词语说说吗?(近义词:好奇)3.请几位同学来为大家读读这句话,要求读出“新奇”的感觉。4.小毛虫在观察。它难道不想加入昆虫们的活动可是……(出示:只有它,这个可怜的小毛虫,既不会唱,也不会跑,更不会飞。)读了这句话,你觉得小毛虫怎么样?(可怜——【板书:可怜】)那它是怎么移动的呢?读一读课文的第二小节。(二)学习课文第二小节。1.(出示:小毛虫费了九牛二虎之力,才挪动了一点点。当它笨拙地从一片叶子爬到另一片叶子上时,它觉得自己就像是周游了整个世界。)小毛虫给你留下了什么印象?从文中找一个词回答。(笨拙)【板书:笨拙】
初读课文,自主识字1.学生自由读课文。师:同学们,课文中描写了大自然的美丽景色,你们想不想读?在读之前老师有个问题想问大家,在读的过程中遇到不认识的字怎么办?(借助拼音,问同学或者老师)学生自己试着读课文。2.教师指名轮流读课文。教师指名以开“小火车”的形式读课文,每人读一小节。其他学生认真听,充当小评委。3.教师用多媒体课件出示课文,其中生字用红色标记。教师组织学生齐读课文。师:读完课文后你们发现了什么?生:这些红色的字就是我们这节课的生字。4.教师指导学生认识生字。