中国是一个有着五千年历史的文明古国,中华民族素来是一个温文尔雅,落落大方,见义勇为,谦恭礼让的文明礼仪之邦。华夏儿女的举手投足、音容笑貌,无不体现一个人的气质与素养。荀子云:“不学礼无以立,人无礼则不生,事无礼则不成,国无礼则不宁。”文明礼仪是我们学习、生活的根基,是我们健康成长的臂膀。孔子云“已所不欲,勿施于人”。文明礼仪时刻提醒我们周围还有别人的存在,我们的行为会相互影响,人与人之间应该建立一种现代化的文明和谐的人际关系!其实,我感觉要想成为一名“讲文明,树新风”的时代青年并不是一件很困难的事情。只要我们从身边做起,从小事做起,就能养成良好的行为习惯。
自打我上小学,妈妈就让我养成坚强、独立的性格,自己的事自己做。 那是一个飘着毛毛细雨的早晨,我早早地出门去买早餐。对于平常吃惯了面包牛奶的妈妈,我多么想给她一个惊喜——为她买一碗热腾腾的面。我买完面便匆匆往回赶。 我小跑着上楼,希望快点把这个惊喜带给妈妈。突然,我的脚下打了个滑,不但我自己摔了个狗啃泥,而且连滚烫的面也泼洒了我一手。我被烫得哇哇大哭,哭声引来了妈妈,我哭丧着脸对妈妈诉苦,满以为会得到一点同情与怜爱,可妈妈只是简单地交代了几句,便又递给我钱,让我重新去买一份。我大为震惊:妈妈怎么那么狠心呀?何况我又是个女孩,她居然都不安慰我一下,我到底是不是她亲生的?我忍着疼痛和怒火接过妈妈给我的钱,又去买了一碗面。
在我们教授孩子们知识的同时,也受到孩子们很多的启发。比如说,在课堂上我按照自己的备课套路跟孩子们讲课,孩子们有的时候并没有听进去。确切地说是没有听懂。作为一位准教师,我没有按照实际情况去衡量,不仅没有预想的效果,反而造成孩子厌学的情绪。经过多次授课,我们在孩子们身上反馈的信息比我们教给孩子们的还要丰富。所以有时我都觉得,其实三下乡最大的作用是教会我们这些大学生如何成长为一个合格的老师的。还有在孩子们身上学到的乐观、坚强,都是我遗失了很久的宝贝。
一、存在的主要问题。 1、没有奋发进取的精神,在自己的工作中做得很好,但需要进一步加强。 2、经常为患者考虑的服务意识不足,有时因为自己的心情问题对患者的服务态度不足,需要进一步改善。 3、业务知识不足。工作不积极,业务知识钻研不足,只重视常见病多发病的诊断和治疗,不重视业务知识的全面性,缺乏钻研精神。 4、组织纪律有时松懈,上班时间有时脱岗,下一步改正。 5、上班时间因工作而上网,通过学习教育和深入思考,坚决消除这种事情。
一、要有率先垂范的团队领导: 领导者是团队的核心,是团队的领路人,领导者的执行力决定了这个团队的执行力。领导力就是战斗力,领导力就是执行力!对领导者而言,执行力不只是员工的义务,更是领导者的责任。身教胜于言传,要求员工做到的,领导者必须先做到,正如付老师所言:“要得到什么,就必须先付出什么!。如果领导者有”法不依、有令不行,上有政策、下有对策,那员工又怎么会听从领导的安排?如果说领导者能以身作责、率先垂范,员工上行下效怎么会执行不力?所以说,一个团队的执行力强弱与否,领导者是关键。领导者的一次率先垂范胜过对员工一百次苍白无力的说教!
随着生活水平的不断提高,自行车、电动车、摩托车、汽车已经慢慢的进入了我们的身边,但同时危险也在慢慢的逼近我们。同时死亡的脚步也在一点一点的向我们移动。同学们你们看,一次又一次的车祸发生了,它无情的吞噬着人类的生命,它在吞噬着人类生命的过程中同时也让许多的家庭支离破碎。同学们,你们想过吗?当你们闯红灯时、当你们和你们的小伙伴们在马路上追逐打闹时,死神已经在向你们招手了。所以我想再一次呼吁:“安全出行,文明出行!”
有一次,我赶去朋友家玩,走着走着,我就发现对面的红绿灯变成了红灯,我不得不停下了脚步,等着等着,我等不及了,这时,我看到马路上没有车,心想:“我闯一次红灯吧。”就这样,我飞快地冲了出去,过了这个红绿灯,我心里有一种说不出来的快活。我走啊走,又走到了另一个红绿灯前,我想:再闯一次红灯吧。当我想像上次一样飞快的跑过马路时,一个叔叔抢在了我的前面,一场惨剧就在我的眼前发生了,这位叔叔刚到马路中央时一台车飞快的冲了过去“碰”,只见叔叔躺在地上,露出惊愕的表情,地下流了很多血,我看到了这一幕,定定的在原地呆着,直到绿灯亮时,我才呆呆地往前走,脑海里一直回想着刚才发生的那一幕。
雪容融形象来源于灯笼。灯笼具有鲜明的中国文化特色,有着20**年的悠久历史,是世界公认的“中国符号”,它是欢乐喜庆节日气氛和“瑞雪兆丰年”美好寓意的完美结合。雪,象征洁白、美丽,是冰雪运动的特点。容,意喻包容、宽容、交流互鉴。融,意喻融合、温暖、相知相融。容融表达了世界文明交流互鉴、和谐发展的理念,体现了通过残奥运动创造一个更加包容的世界和构建人类命运共同体的美好愿景
(二)探究新知 1. 探究圆锥的体积的计算方法,学习例2。师:圆锥的体积和圆柱的体积有没有关系呢?圆柱的底面是圆,圆锥的底面也是圆……通过实验探究一下圆锥和圆柱体积之间的关系。小组合作探索:(1)各组准备好等底、等高的圆柱、圆锥形容器。(2)用倒沙子或水的方法试一试。(3)圆锥的体积与同它等底等 高的圆柱体积之间有什么关系?(4)小组活动,师巡视指导。2.推导圆锥体积的计算方法。 (1)课件演示等底等高的圆柱和圆锥
(一)复习导入 师:什么是体积?生:物体所占空间的大小是物体的体积。师:怎样求长方体和正方体的体积?生:长方体的体积=底面积×高 正方体的体积=底面积×高师:圆的面积计算公式是怎样推导出来的?课件出示:生:把圆转化成长方形,长方形的长等于圆柱底面周长的一半,宽等于半径,所以圆的面积:S = πr2猜测:把圆柱转化成什么立体图形来推导圆柱的体积公式呢?呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。
(一)复习旧知,导入新课。师:同学们,上节课我们认识了体积和体积单位,请你填一填这两道题,看看你学得怎么样。(课件第2张)1.常用的体积单位有(立方厘米)、(立方分米)、(立方米),可以分别写成(cm³) 、(dm³)、 (m³)。2.棱长是1cm的正方体,体积是(1cm³)。3.棱长是1dm的正方体,体积是(1dm³)。4.棱长是1m的正方体,体积是(1m³)。【设计意图】1dm³是多少cm³呢?这节课我们就来研究一下体积单位间的进率。(板书课题)(二)探究新知1.探究立方分米和立方厘米间的进率:(课件第3张)(1)下图是一个棱长为1dm的正方体,体积是1dm³。想一想,它的体积是多少立方厘米呢?(2)小组讨论,你是怎样想的?(3)汇报交流:(课件第4张)生1:如果把它的棱长看作是10cm,可以把它切成1000块1cm³的小正方体。10×10×10=1000.生2:它的底面积是1dm²,就是100cm²,100×10=1000,一共是1000cm³。1dm³=1000cm³【设计意图】用小组讨论的方式,让学生从讨论的过程中找到解决问题的方法,培养学生的语言表达能力、思维能力。2.你知道1m³等于多少立方分米吗?(课件第5张)生1:把棱长是1m的正方体,看作棱长是10dm的正方体,10×10×10=1000dm³。1m³=1000dm³。 生2:棱长是1m的正方体,底面积是1m²,就是100dm²,100×10=1000dm³,一共是1000dm³。生3:1m³=1000dm³ 3.整理计量单位之间的进率。(1)小组讨论:到现在为止,我们已经学习了哪些计量单位?请整理在表中。
1.让学生拿出长方体摸一摸,问:你有什么感觉?摸的的面是什么形状?师:谁来摸一摸,老师手上长方体的长方形在哪?(学生找出长方形)2.让学生在自己的学具(长方体、正方体、圆柱体)上找图形,并和小组里的同学说一说。3、指名说,教师把学生找到的图形从立体图形上分离出来,贴于黑板上,师:这些图形是物体上的一个面,这就是我们今天要认识的图形。(板书课题——认识平面图形)4.让学生说说:从什么物体上找到了什么图形?5.师:你能想办法把这些形状画到一张纸上吗?请学生演示各自不同的方法,然后教师在黑板上沿长方体的一个面画出长方形。师:你会画吗?请小朋友们用自己喜欢的办法画出并剪出长方形、正方形、圆和三角形各2个。
一.我对教材的理解(教材地位作用分析)——参考教学参考书《观察物体(二)》是物体的空间位置关系与形状的认识,是小数教学中的重要基础内容之一,也是小学生学习图形与几何数学知识需要掌握的基础知识和基本技能。本课内容是学生在学习了从不同角度(视角)观察物体位置与形状的基础上学习的。教材选取学生熟悉的空间环境和物体,通过从相同的角度(视角)位置观察、认识不同几何组合体形状的活动,认识、感悟从相同角度(视角)观察不同物体,看到的形状可能相同也可能不同,丰富、发展学生空间观念和观察、思考、判断能力,为进一步学习图形与几何知识铺路奠基。二.学情分析(根据考评要求,可不说)因为年龄特征决定了四年级学生活泼好奇好动,虽具一定的抽象思维能力,但仍然以形象思维为主;通过前面从不同方向角度观察认识简单物体的形状的学习,具一定的初步观察思考判断能力和左、右、前、后的二维空间观念,但却十分稚嫩;同时又存在个体差异,多数学生思维活跃,数学兴趣浓厚,表现欲望强烈,少数学生缺乏积极性,学习被动,基础较为薄弱;部分学生新知基础遗忘。
三、说学法学生是学习的主体,应在学习中充分发挥自己的主体能动作用,所以本节课学生主要采用以分组实践、自主探究、合作交流为主要形式的“探究学习法”,目的是通过丰富多彩的小组活动,观察实践,以合作学习促进自主探究。首先是小组合作观察药箱和其他立体图形的活动,我先让小组成员独立思考,然后组内讨论交流,达成共识,最后小组成员一齐操作。然后是小组议一议的活动,老师先引导学生:关于观察物体,你有什么新发现?学生在独立思考的基础上讨论交流,各抒己见,共同促进。组与组之间也有交流。学生合作过程中,教师适当的启发、引导,学生的学习方式主要是自主、合作和探究性的。
1、创设情境,激趣导入。通过有趣的机器人引出学生对几何体的初步感知。使学生的注意力马上集中起来,学习的兴趣被激发,学生强烈渴望进入下面的学习。2、我接着请同学们动手分一分,使学生初步认识长方体、正方体、圆柱、球,知道它们的名称。并用已有的生活经验给几何体命名,再一次调动了大部分学生的学习兴致。3、游戏“我说你摸”“搭一撘”的目的,是为了让学生由实物抽象出形状图形,培养学生抽象能力,在由形状说出生活中是这种形状的实物的练习活动。游戏,不仅可以激发学生的学习兴趣,也可进一步培养学生的空间观念。并能感受复杂物体的形状与简单几何体之间的联系。4、内容小结,巩固新知通过这节课的学习,和学生一起回顾这节课我们认识了哪些物体。既是学生对这节课知识的自我整理,同时又考查学生对知识的掌握程度。也是对学生言语表达能力的培养。
(二)师生互动,认识长方形、正方形、三角形和圆。1、学生拿出准备好的学具(长方形、正方形、等)亲自动手实践,摸一摸、看一看,并在纸上描画这些物体的面,比一比哪个小组的同学画得最好。2、分组讨论,教师巡视3、全班交流,展示作品,根据学生的交流,师生共同得出结论,长方体画出的是长方形,正方体画出的是正方形,三角锥画出的是三角形,圆柱画出的是圆。4、联系生活说一说,清学生说一说生活中见到哪些物体的面是长方形、正方形、三角形和圆。(三)巩固练习用准备好的学具(若干个)拼出自己喜欢的图案,看哪个小组在规定的时间内拼得图案最多最美。1、小组活动。2、各个小组展示自己的作品。3、小组评价,选出优胜品。师选出几个有代表性的作品,让学生分析它是由什么图形组成。
⑴照相现在高科技产品已经越来越普及。利用学生对高科技产品的好奇心,我带来了一部数码照相机。我对学生说:“你们想拍照片吗?”学生会情绪高涨“想!”“那你们可要听仔细了。我请一位同学来帮另一位同学来拍照片,拍出来的照片要既能看到他的正面又能看到他的侧面。其余同学判断他站的角度是否正确。”正当活动进行得如火如荼的之时,我趁热打铁,说“你们其他同学一定也很想照相吧。这样,我来帮你们拍一张合影,好不好?我想拍一张你们的正面照你们怎么站?我要拍你们的侧面照你们怎么站?我要拍你们的背影呢?(让学生根据要求站位置,使全班学生都参与到活动中。)⑵观察礼物盒我先出示一个礼物盒,对学生说:“你们想要这个礼物盒吗?先猜猜这个礼物盒最少能看到几个面?多能看到几个面?哪几个面?在哪儿可以看到?”部分学生可能会说出正确答案,而还有一部分学生可能不能很快地说出答案。
这样让学生的想象建立在一定的表象基础上,不是凭空去想像。学生经历了猜测、分析推理,最后再实物验证的过程。同时,发展了学生的空间想像力和思维能力。)我继续追问:你们能不能想出一个好办法让大家知道这究竟是什么物体吗?这一富有挑战性的问题,激发了学生积极主动的去思维。从而探究出解决问题的方法是还要知道另一个面或两个面的形状。2、有了练习八第2题做铺垫,再小组合作完成39页“做一做”就很容易了,这样也体现了知识出现的层次性。)为了帮助学生把零散的知识进行归纳梳理,同时培养学生从不同角度欣赏他人的良好心态。接下来我对应用部分进行了小结:我们通过观察发现从同一个方向观察不同形状的立体图形,得到的形状也可能是相同的。因此,我们不能只根据一个方向看到的形状就确定是什么立体图形,只有把不同方向看到的形状进行综合,才能进行正确的判断。我们要全面了解一件事物或一个人也要懂得从不同的角度去观察、思考,不能片面的看待。
4、认识长方体的立体图。师:(出示课件长方体)你最多能看到这个长方体的几个面?你看到了哪三个面?哪三个面看不到?(上面、前面、右面)师:我们把所看到的这个长方体根据透视原理画下来就是这样的。(媒体演示) 这就是长方体的立体图形。师:大家会认了吗?试一试。师小结:以后,我们要判断一个物体是不是长方体,要根据长方体的特征去分析。5、画长方体师:同学们都学得非常认真知道了长方体的特征,那么大家会画长方体吗?画长方体步骤:1、画一个平行四边形。2、画出长方体的高。3、连线。6、 教学长方体的长、宽、高。 (1)、师:同学们刚画出了长方体,那么长方体的长、宽、高有什么特点?师课件展示后,学生汇报。(2)、大家想不想亲手制作一个长方体的框架呢?把你思考的结果和大家分享分享。生汇报。
首先,学生带着如下三个问题自学课文,(电脑出示):(1)用什么方法可以得到计算圆锥体积的公式?(2)圆柱和圆锥等底等高是什么意思?(3)得出了什么结论?圆锥体积的计算公式是什么?其次,学生操作实验,先让学生比较圆柱和圆锥是等底等高。再让学生做在圆锥中装满沙土往等底等高的圆柱中倒和在圆柱中装满沙土往等底等高的圆锥中倒的实验,得出倒三次正好倒满。使学生理解等底等高的圆柱和圆锥,圆锥的体积是圆柱体积的,圆柱的体积是圆锥的3倍。第三、小组讨论,全班交流,归纳,推导出圆锥体积的计算公式:V= Sh。第四、让学生做在小圆锥里装满沙土往大圆柱中倒的实验,得出倒三次不能倒满。再次强调,只有等底等高的圆柱和圆锥才存在着一定的倍数关系。第五、师生小结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。