比较2和3两个算式:这两个算式的不同?请学生具体解释一下270-180为什么要用括号?让学生体会到解决问题的思路不同,解决方法也不同,计算的步数也是不同的。(再请学生分别说说这两个算式的计算过程,每一步的含义。)小结:括号是用来改变运算顺序的。当你列出的综合算式的运算顺序与实际需要的运算顺序不相符时,就用括号来改变运算顺序。比如(擦去(270-180)÷30中的括号)这样的算式中先算什么?按照混合运算顺序的规定是不能先算270-180的,要想先算这部分就要用括号把这一步括起来。这个算式才正确表示了我们解决问题的方法步骤。(设计意图:在这个环节中,在自主探索的基础上,教师给学生提供充分表达自己见解的机会,阐述自己得出的结论探究过程及疑难问题。然后根据学生反馈的信息,组织、引导学生通过个体发言、小组讨论、辩论等多种形式进行辨析评价,使学生的认知结构更加稳定和完善。)
一、说教材该内容是人教版小学数学四年级第八册第四单元的最后一个内容,是在学生已经掌握了把整万、整亿数改写成用万或亿作单位的数的基础上进行教学的。通过本节课的学习,要使学生能通过独立思考、合作交流,掌握把大数目改写成用“万”或“亿”作单位的数的方法,为以后能准确、恰当地运用数目描述生活现象打下良好的基础。根据本课的内容和学生已有的知识和心理特征,我制订如下教学目标:1、掌握把较大数改写成用“万”或“亿”作单位的数的方法,并能根据要求保留一定的小数位数。2、经历将一个数改写成用“万”或“亿”作单位的数的过程,体验数据记法的多样性。3、感受数学知识的应用性。理解和掌握把较大的数改写成用“万”或“亿”作单位的小数的方法是本课的教学重点。位数不够用0补足是本节课的难点。
(一)教学内容:我说课的内容是第5单元中内容,(二)教材地位:加法是数学中最基本的运算之一。从教材的纵向联系来看,几年前已学过整数加法和小数加法,以及加法的运算定律,知道它不仅适用于整数加法,而且也适用于小数加法。那么是否也适用于现在所学习的分数加法呢?这就是我们这节课要研究的问题,当然,结果是肯定的。通过本课的学习,将整数加法的运算定律推广到分数加法,可使学生对加法的认识从感性上升到理性。为后面学习分数加法的简便计算打好基础,同时也为学习小数、分数混合运算奠定基础。其次,将整数加法的运算定律推广到分数加法,也拓展了加法运算定律的使用范围,丰富其内涵。而且加法运算定律字母表示形式,为以后代数知识的学习奠定了初步基础。
4.教学比例的各部分名称这部分的教学,我采用了阅读自学法。实施素质教育,使学生由“学会”变“会学”,这里我注重培养学生的自学能力,师生的双边关系亦实现从扶到放的转变。在学生自学课本时,老师写出比例的两种形式,引导学生注意内项和外项的位置。5.教学比例的基本性质观察80:2=200:5中的两个内项的积与两个外项的积的关系,引导学生把两个外项与两个内项分别相乘,比较结果,然后引导他们回答:2:3 = 0.4:0.6。两个内项的积与两个外项的积有什么关系?再让学生归纳出比例的基本性质,探讨写分数形式,归纳“交叉相乘”积相等。小结:比例的基本性质可以检验组成的比例对不对?并提问:4:9=5:10成立吗?比例的基本性质是本课的第二个重点。为了突出重点,我引导学生通过计算几个比例式的内项积和外项积,也从特殊到一般的推理方式,引导学生发现规律,总结概括性质。同时也渗透了实践第一的观点。
二、以人为本,说策略。《数学课程标准》指出:“数学教学要紧密联系学生的生活实际,从学生的生活经验和已有的知识出发……”因此,结合本课教材特点、学生实际情况,我采取小组合作学习,引导学生应用学过的分数、小数互化的知识进行迁移、类推,学习新知识。同时,让学生在尝试探究的积极活动中获取新知,发展能力。三、以探为主,说流程。课堂教学是学生数学知识的获得、技能技巧的形成、智力、能力的发展以及思想品德的养成的主要途径。为了达到预期的教学目标,我对整个教学过程进行了系统地规划,遵循目标性、整体性、启发性、主体性等一系列原则进行教学设计。设计了以下几个主要的教学程序:(一)设疑激趣,引入课题。“兴趣是最好的老师”,为了激发学生的学习兴趣,课一开始,我设计了一个童话故事,在故事中设计了帮助主人公比较2/5、42%、0.45的问题,然后引出课题。
师:这是一种较为简便、应用广泛的方法,但有时候也要具体问题具体分析,做题时要合理灵活地选择计算方法。《研究学生如何学比研究教师如何教更重要。学生对新知识的学习必须以已有的知识和学习经验作为基础,因此正确分析学生的知识基础和学习经验就显得格外重要。我认为分数除以整数的教学基础在于以下几点:分数与小数的转化;分数的意义;分数乘法的意义;倒数的知识;商不变的性质等。这些知识在以前的学习中,学都有了足够的掌握。有了上面的分析基础,我觉得把研究新知识的权力教给学生,是完全可以的。》4、质疑与反思。师:对于这些方法,尽管大家的思维角度不尽相同,但是基本的想法是相同的,想一想我们是怎样解决问题的?生:用学过的倒数、商不变的性质解决的。师:对。用一句话概括就是运用旧知识解决新新问题。这是一种很重要的学习方法。5、实践体验练习巩固。
一.说教材。我说课的内容是人教版课程标准实验教科书六年级上册的分数除法单元中的例1和例2。例1是分数除法的意义认识,例2是分数除以整数的计算。在这之前学生已经掌握了整数除法的意义和分数乘法的意义及计算,而本课的学习将为统一分数除法计算法则打下基础。例1先是整数除法回顾,再由100克=1/10千克,从而引出分数除法算式,通过类比使学生认识到分数除法的意义与整数除法的意义相同,都是‘已知两个因数的积和其中一个因数,求另一个因数的运算’。例2是分数除以整数的计算教学,意在通过让学生进行折纸实验、验证,引导学生将‘图’和‘式’进行对照分析,从而发现算法,感悟算理,同时也初步感受数形结合的思想方法。根据刚才对教材的理解,本节课的教学目标是:1、理解分数除法的意义与整数除法的意义相同。2.理解分数除以整数的计算原理,掌握计算方法,并能正确的进行计算。
1.师要注意区别教学内容是否适合进行小组合作探究。这种学习是否每节课都需要。学生的小组学习是否在走过场,或者说流于形式。教师要注意营造自由自在的学习氛围,控制讨论的局面,如讨论中是否有人进行人身攻击,是否有人垄断发言权而有的人却一言不发,是否有人窃窃私语,教师要在巡视及参与中“察言观色”,及时调控。2.教师要充分注意精心设计的问题。教师的教学设计是否合适,是做秀还是教学的需要。这不仅需要教师的认同,还需要课程的认同,学生的认同。因此,对于适合采用小组合作探究方式的教学内容,我们一定要根据课程标准的三维目标学生现有的认知程度和兴趣以及本课要解决的问题和教学任务来精心设计问题。3.要注重小组合作探究的组织,进行适当有效的指导。教师要转换自己的角色,从传授者变成指导者、参与者、监控者和帮助者,并切实注意自身行为的方法和效果,及时进行调整。
讨论交流:正是靠着这种民族精神,我国建成了一个个大油田。到1965年,中国的石油基本实现自给。5、补充资料1964年10月16日和1967年6月17日,中国西北罗布泊大漠中,升起了蘑菇状的烟云。我国相继成功爆炸了第一颗原子弹和第一颗氢弹,成为继美国、苏联、英国之后第四个同时拥有原子弹和核弹的国家。中国从此拥有了保家卫国、捍卫和平的核力量。交流邓稼先故事1950年8月,邓稼先在美国获得博士学位九天后,便谢绝了恩师和同校好友的挽留,毅然决定回国。同年10月,邓稼先来到中国科学院近代物理研究所任研究员。在北京外事部门的招待会上,有人问他带了什么回来。他说:“带了几双眼下中国还不能生产的尼龙袜子送给父亲,还带了一脑袋关于原子核的知识。”此后的八年间,他进行了中国原子核理论的研究。
(1)这个故事的什么地方最令你感动?(2)你从这个故事中看到邓稼先怎样的奉献精神?1950年,新中国诞生的消息传到了大洋彼岸,年仅 26岁的邓稼先刚刚取得学位,毅然放弃了在美国优越的生活和工作条件,冲破重重阻挠回到祖国。1958年,他接受国家最高机密任务秘密研制原子弹。从此,邓稼先隐姓埋名28年,连家人也不知他的去向,一直奋战在我国西部荒漠中的核基地。在一次航投试验中,原子弹意外摔裂。邓稼先明知危险,却一个人跑上前去亲自察看,导致身体邓稼先受到核辐射的致命伤害。他忘我地工作,和许多著名科学家同心协力,攻破一道又一道科学难关,终于为祖国点燃了那饱含着我国科学家们智慧和力量的神奇之火。1986年7月29日,他临终前留下的话仍是如何在尖端武器方面努力,并叮嘱:“不要让人家把我们落得太远……”4.你还知道哪些为新中国作出贡献的科学家?你能说说他们的故事吗?(1)华罗庚:梁园虽好,非久居之地1950年3 月,来自美国的“克利夫兰总统号”邮轮航抵香港,略作停留,进行补给。
1.教学内容《就英法联军远征中国致巴特勒上尉的信》是九年级上册第二单元的一篇课文,从教材内容分析,该文写的是法国著名作家雨果就英法联军远征中国一事,愤怒谴责英法联军的强盗行为,愤怒谴责英法联军毁灭世界奇迹圆明园的罪行,他深切同情中国所遭受的空前劫难,表现出对东方艺术、对亚洲文明、对中华民族的充分尊重。教师要做到能调动学生参与并融入课文的氛围中并为作者的强烈感情所感染。2.教材的地位、作用本课是愤怒谴责非正义战争的罪恶,学习这篇课文就要抓住本文的语言特色,了解雨果的伟大情操。进而关注那段历史,探究被劫掠的根本原因,由此把关注的目光投向艺术、文化、人类及整个世界。本课在学生的审美体验、能力培养上,都起着十分重要的作用。3.教学目标根据新课改理念,结合本文的特点,学生的兴趣,爱好及个性特征,我制定了如下教学目标:
(2) 中国文人的悲秋情结。3.《荷塘月色》中,作者为什么要离开家来到荷塘散步?4. 思考:作者的心里为何“颇不宁静?”(教师补充:写作背景)5. 出门散步后,作者的心情发生变化了吗? 有怎样的变化?6.思考讨论:为什么作者说“我”与“地坛”间有着宿命般的缘分,二者有何相似之处?(阅读1-5段)7.思考:作者从他同病相怜的“朋友“身上理解了怎样的”意图“?三、课堂总结李白说:“天地者,万物之逆旅也。”人生,如同一场旅行,在人生的旅途中,时而高山,时而峡谷,时而坦途,时而歧路。我们或放歌,或悲哭,然而,大自然始终以其不变的姿势深情地看着我们,而我们,也应该学会在与自然的深情对望中,找到生命的契合。正如敬亭山之于李白,故都的秋之于郁达夫,荷塘月色之于朱自清,地坛之于史铁生,他们从中或得到心灵的慰藉、精神的寄托,或得到生存的智慧与勇气,最终完成精神的超脱。
这几段内容传达出的是“要敬畏生命,尊重生命;更要敬畏大自然,尊重大自然,爱护大自然”的主旨内涵,因此让学生通过自由朗读的方式,再次体会冯至对这个消逝了的山村的细致的美好的描绘,感悟冯至传达出的对生命,对自然的理解和思考。5.最后一个自然段的解读依然是交给学生,先齐读课文,再让学生自主分享自己的体会或疑惑。但在这一环节我也设计了两个我认为必须解答的两个问题,一是怎么理解“在风雨如晦的时刻”;二是“意味不尽的关联”是指什么。我认为这两个问题一个涉及到写作背景,一个涉及到对全文主旨的一个整体把握,能够进一步帮助学生理解散文的深刻内涵和主旨,让学生有意识的在阅读散文过程中通过背景知识进行理解。既尊重学生的个性化解读,又能够让学生有意义学习,完成预设的教学目标。如果学生没有提到这两处,那我就需要做出补充。
一.说教材我今天说课的内容是义务教育课程标准北师大版七年级下册第四单元第二节的《用关系式表示的变量间关系》。在上节课的学习中学生已通过分析表格中的数据,感受到变量之间的相依关系,并用自己的语言加以描述,初步具有了有条理的思考和表达的能力,为本节的深入学习奠定了基础。二.说教学目标本节课根据新的教学理念和学生需要掌握的知识,确立本节课的三种教学目标:知识与能力目标:根据具体情况,能用适当的函数表示方法刻画简单实际问题中变量之间的关系,能确定简单实际问题中函数自变量的取值范围,并会求函数值。过程与方法目标:经历探索某些图形中变量之间的关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感。情感态度与价值观目标:通过研究,学习培养抽象思维能力和概括能力,通过对自变量和因变量关系的表达,培养数学建模能力,增强应用意识。
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 7.1 平面向量的概念及线性运算 *创设情境 兴趣导入 如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗? 图7-1 介绍 播放 课件 引导 分析 了解 观看 课件 思考 自我 分析 从实例出发使学生自然的走向知识点 0 3*动脑思考 探索新知 【新知识】 在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我们经常用箭头来表示方向,带有方向的线段叫做有向线段.通常使用有向线段来表示向量.线段箭头的指向表示向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作. 图7-2 平面内的有向线段表示的向量称为平面向量. 向量的大小叫做向量的模.向量a, 的模依次记作,. 模为零的向量叫做零向量.记作0,零向量的方向是不确定的. 模为1的向量叫做单位向量. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 带领 学生 分析 引导 式启 发学 生得 出结 果 10
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为