三、深化以案促改,在整改落实中造合规审慎之势以案促改工作开展以来,我们召开了专题民主生活会,认真检视和查摆问题,进行了批评与自我批评,取得了一定效果,但以案促改、做实“后半篇文章”是一项综合性、系统性很强的工作,必须结合实际不断探索、总结、深化、提升,把工作做得更加深入、更加到位。以案促改,重点是用身边事教育身边人。“前车之覆,后车之鉴。”要利用我们身边的典型案例,认真开展警示教育,引发员工产生共鸣,举一反三、引以为戒,促进遵纪守法行为习惯的养成。以案促改,基础是建章立制从源头堵住风险漏洞。善除害者察其本,善理疾者绝其源。要认真分析问题发生的原因,从源头上采取预防措施。要针对一些典型案例,精准找出案件暴露出的思想教育、权力监督、体制机制上的问题,完善问题清单、责任清单、整改清单“三个清单”,系统归纳,查漏补缺,建章立制,达到“查办一起案件,教育一批干部,完善一套制度,解决一类问题”的效果。
每月至少召开1次专题部务会,专题研究各调研小组月度调研情况,梳理反映较为集合、冲突较为突出、问题层次较深的情况形成问题清单,由部务会会议研究分析,针对具体问题提出具体工作措施,分解任务责任到人,督办攻坚克难破题补短。●季度总结梳理阶段调研成就由调研工作领导小组牵头,每季度至少梳理1次各调研小组调研成就,着重检验重点任务完成情况、难点问题化解情况,提炼总结调研过程中博得的好经验好做法,健全完善调研办法体系。自2022年以来,共计召动工作例会听取各调研小组汇报18次,召开专题部务会研究调研情况4次,制定重点问题清单梳理重点问题23项,解决基层反映较为突出问题42个。五、常态监督回访,运用整改清单建立调研反馈问题日常监督检查机制,将各单位反馈问题逐项逐条开列整改清单,清单式抓实整改,保证基层反馈问题不恶化、不重复、不回弹,做好调研"后半篇文章"。
6.落实应急值守。我街道严格落实24小时值班值守制度,值守期间总计接到各类事件反馈189宗,均得到妥善处置。2024年,共计组织三防综合业务培训共3场,大大提升了XX街道应急救援队伍的应急救援意识、应急处置能力。街道落实了完备的应急通讯保障措施,形成信息通讯联络网,实现了信息互通、信息共享,提升了应急处置工作效率。7.深化防灾减灾工作(1)开展防灾减灾进社区宣传活动。今年街道办联合社区工作站共开展防灾减灾日系列宣传活动3场,活动以“防范灾害风险、护航高质量发展”为主题,活动参与人数约1100人次,制作、发放宣传册、海报等宣传资料约1100份。各社区发布防灾减灾相关科普图文、短视频、海报、音频20篇,总阅读量约24万。(2)做好防灾减灾物资储备工作。目前,我街道有XX小学和XX小学两处应急避险点。
7.深化防灾减灾工作(1)开展防灾减灾进社区宣传活动。今年街道办联合社区工作站共开展防灾减灾日系列宣传活动3场,活动以“防范灾害风险、护航高质量发展”为主题,活动参与人数约1100人次,制作、发放宣传册、海报等宣传资料约1100份。各社区发布防灾减灾相关科普图文、短视频、海报、音频20篇,总阅读量约24万。(2)做好防灾减灾物资储备工作。目前,我街道有XX小学和XX小学两处应急避险点。按照防灾减灾工作要求,我街道为两处应急避险点配备了应急食品、药品、保暖用品、清洁用品等避险物资。并且在逐步完善应急避难场所制度上墙、应急避难场所标识公示等标准化建设。(3)积极推进防灾减灾社区创建工作。我街道今年继续做好综合减灾社区常态化工作,我街道从硬件设施的完备,到软件台账的完善,积极主动,克服困难,共召开2次专门业务会议探讨创建工作。目前,该工作正在按计划稳步推进,今年田贝社区力争创建全国综合减灾社区的名额,目前处于查漏补缺完善阶段。
(四)注重典型示范引领。以文明乡风助推乡村振兴,以榜样力量引领时代潮流,树立文明乡风需要发挥人的作用,通过榜样力量的引领,让文明乡风有前景、有根基。在“小手拉大手共建文明城”征文比赛活动中,XX区共有XX篇参赛作品获奖,其中一等奖XX篇,二等奖XX篇,三等奖XX篇,优秀奖XX篇。在全国最美家庭评选活动中,XX家庭被评为全国最美家庭。今年以来,XX区共向上级推荐市级新时代好少年XX名,省级文明校园XX个,文明单位XX个。学习榜样故事,感受榜样力量,激发奋进精神,激发干部群众争当模范,让好的标杆成为向上向善的力量。(五)强化宣传活动,营造浓厚氛围。充分利用各村(社区)宣传栏、横幅、标语、LED显示屏等载体广泛宣传,大力宣传有关婚丧改革的法律法规,宣传移风易俗的重大意义,引导广大群众从我做起,从小事做起,移风易俗,倡树新风,营造良好的工作氛围。
人居环境整治工作既是攻坚战,也是持久战,需要我们常抓不懈、久久为功,各位要坚决克服厌战情绪和侥幸心理,牢固树立“逆水行舟,不进则退,慢进也是退”的理念,争分夺秒抓整治、全力以赴促整改,同时要保持工作韧性和连续性,杜绝“三天打鱼两天晒网”,确保长效管理不松懈、严抓共管不放松、清理彻底不反弹。同志们,人居环境整治工作既是一项民生工程,更是一项民心工程,我们既是建设者,更是受益者。希望大家回去后立即部署、迅速行动、精准发力、狠抓落实,让群众切实感受到人居环境整治的热潮,以时不我待的紧迫感、舍我其谁的使命感、造福一方的责任感推动农村人居环境整治工作再上新台阶,共同把这一事关农业农村高质量发展和群众幸福生活的大事、好事抓好抓实。
(一)加强餐饮行业经营行为管理一是强化日常督导检查。组织开展日常性排查,尤其是在重要传统节日期间,对辰悦广场、裕德隆饭店、立绅酒楼、惠宾饭店、贤福记等商综、餐饮企业开展检查,重点检查经营者食品储存、运输、加工条件,临近保质期的食品分类管理,督促企业强化食品安全意识,落实食品安全责任。目前,区内重点餐饮企业均已明示服务规范,并执行行业标准。同时,通过“XX文旅”公众号向全区文化和旅游行业发出倡议,倡导星级饭店、旅行社和导游、景区、网络直播行业等各领域落实反食品浪费行为的相关规定,做好反食品浪费与粮食节约减损宣传工作,通过扩大宣传促进市民养成爱惜粮食、文明餐饮习惯。指导天士力大健康城景区根据就餐人员数量、季节变化等情况,按照“定期采购、适量储备”的原则确定食材采购数量,避免采购过多造成变质浪费。
二、强化日常分析研判,让能“上”能“下”有理由通过日常考核考察、专项调研、监督检查等方式,对干部队伍及干部个人进行综合分析研判,2021年乡镇领导班子换届中,通过充分比选酝酿,选拔x名优秀干部进入乡镇领导班子,对x名工作能力与岗位需求不相匹配的干部及时进行调整。注重将工作实绩与干部能“上”能“下”有机结合,每季度对各单位牵头负责的省、州、市重点项目和工作任务推进情况进行全面督办,根据推动落实情况进行定星评级,在市行政中心门口以大型展板向全市人民公示,并将其作为年度综合目标考核等次评定的重要依据,同时作为干部评优评先、提拔晋升和调整履职不力、本职工作推进较差的干部“下”的重要依据。三、全面落实严管厚爱,让能“上”能“下”有措施构建“四位一体”从严管理干部机制,整合纪检、组织、机构编制、考评部门职能职责资源,印发《x市建立工作目标、岗位责任、正向激励保障、负向惩戒约束“四位一体”从严管理干部机制实施方案》,针对干部正向激励保障和负面惩戒约束提出x条措施,着力将干部管理落细落实落在经常,推动干部能“上”能“下”科学化、规范化,为高质量建设强富美的新x提供了有力的组织保证。
三要继续强化督查检查,建立长效机制镇人居办要常态化开展督查检查,深入一线发现问题,做到早发现、早制止、早处置,防止小问题变成大麻烦。要明确部门责任、村(街)责任,责任到人,对思想上不重视、行动上不积极、整改上不彻底的单位和个人进行通报,对在上级考核中出现严重问题的将严肃处理。人居环境整治工作既是攻坚战,也是持久战,需要我们常抓不懈、久久为功,各位要坚决克服厌战情绪和侥幸心理,牢固树立“逆水行舟,不进则退,慢进也是退”的理念,争分夺秒抓整治、全力以赴促整改,同时要保持工作韧性和连续性,杜绝“三天打鱼两天晒网”,确保长效管理不松懈、严抓共管不放松、清理彻底不反弹。同志们,人居环境整治工作既是一项民生工程,更是一项民心工程,我们既是建设者,更是受益者。
1. 抓好电子商务,促进农产品销售。我市各级社重视抓电子商务发展工作,虽然供销社电商销售起步晚,缺乏经验,但敢做大胆尝试,加快电子商务建设。目前全市供销社系统已筹建电子商务公司4家,其中,灵山县供销社去年6月注册了“灵山县振合电子商务公司”,建设了30个村级电商服务点;8月投资了150多万元加盟灵山县宅急送快递、全峰快递和亚丰物流,组建了自己的快递物流团队,目前县城有3个快递物流点、乡镇有18个快递物流点,整个团队有55名工作人员、30多辆物流车。浦北县同样注册了“浦北县中亨电子商务有限公司”,建立了80个村级电商服务点,还通过政府采购了“电子商务进农村人才培训工程项目”和广西二维码中心浦北县分中心项目。钦南区也注册了“钦州市钦南区宏云电子商务有限责任公司”,目前在尖山虾虾乐现代特色农业核心示范区建立钦南区虾虾乐电子商务服务中心。20**年灵山县通过网络营销渠道实现销售荔枝60多吨,销售额达150多万元,电商销售占的份额虽小,但在这方面也取得了突破。
为了促进生猪、鲜蛋、菜牛、菜羊、家禽的商品生产,满足城乡人民生活对肉、蛋、禽商品的需要,经甲乙双方充分协商,特订立本合同,以便双方共同遵守。第一条 产品的名称、品种和数量1.产品的名称和品种:________________________________________.2.产品的数量:____________________________________________ .(必须明确规定产品的计量单位和计量方法)第二条 产品的等级、质量和检疫办法1.产品的等级和质量:________________________________________.(产品的等级和质量,国家有关部门有明确规定的,按规定标准确定产品的等级和质量;国家有关部门无明文规定的,由双方当事人协商确定。)2.产品的检疫办法:________________________________________ .(国家或地方主管部门有卫生检疫规定的,按规定进行检疫。)第三条 产品的价格、货款结算与奖售办法1.产品的价格按下列第 项执行:(1)派购任务或派购基数内的产品,执行国家规定的收购牌价。在合同执行期内遇有价格调整时,按新价格执行。(2)不属派购任务或派购基数的产品,收购价格由当事人协商议定。2.货款结算办法按下列第 项执行:(1)对村民、专业户、个体经营户采取现金结算,钱货两清。
甲方专业开发、生产、销售 系列产品,为了迅速拓展全国市场,建立起遍布全国的销售及服务网络,使全国各省市的消费者能享受到更优质、更快捷、更专业的产品售前售后服务,特向全国各省市招纳有相关产品的市场开拓能力和售后服务能力的代理经营商。甲乙双方本着公平、公正、平等、互惠互利的原则,经多次磋商,一致同意共同合作开拓乙方所在地的 系列产品市场,并达成以下条款:一、 总则乙方保证是可以独立承担民事责任的企业单位,需提交公司营业执照副本原件、组织机构代码证原件,法人身份证原件,固定合法经营场地等相关资质证明供甲方验证,并提交上述证明文件的复印件作本合同附件,并自愿遵守甲方的相关规章制度和标准,进行自主经营。本协议提及的知识产权(注册商标、品牌形象、营运方案)归甲方所有。二、 代理产品名称、代理区域、代理期限1、授权代理产品名称:2、甲方授权乙方为 区的合法区域代理商,甲方保证在乙方销售区域内发展不超过 个代理商。3、授权代理期限为 年,自 年 月 日起至 年 月 日止。
教学目标:欣赏《月牙儿五更》器乐和声乐曲各有什么特点?教学重、难点1、重点:欣赏《月牙儿五更》,感受民歌改编的器乐作品。2、难点:比较《月牙儿五更》器乐和声乐表现形式的特点。教学过程:一、导入1、根据课题《神州音韵》,导入我国幅员辽阔,拥有多样的地形地貌和复杂的地理环境。同时,我国还是个拥有五十六个民族的大家庭,人们在生活中创造了丰富多彩的民族民间音乐。本节课,我们所学习的音乐都是我们国家的民族音乐。2、同学们对我国的民歌有多少了解?同学讨论,老师补充。二、欣赏《月牙儿五更》1、本节所欣赏的是板胡独奏《月牙儿五更》,所以先了解乐器板胡,看图片,了解板胡的构造。2、聆听与思考:很多优秀的民歌被作曲家改编成了器乐曲,试比较《月牙儿五更》器乐和声乐表现形式各有什么特点?三、结束希望同学们在以后的生活中多了解、喜爱我们的民族音乐,感受民族音乐的独特魅力。
教学过程一、导入教师:同学们,今天老师要带领大家到东北地区,去欣赏东北民歌。二、新课教学1、教师:关东支脉音乐的体裁形式和风格特点与齐鲁燕赵支脉有许多相同之处,但又形成了自身的特点。接下来我们通过几首有代表性的作品来找出关东支脉音乐的风格特点。2、教师播放《月牙儿五更》,请学生思考这首歌曲属于音乐民歌中的哪一种。学生回答回忆上节的知识。3、教师:大家能不能说出这首《月牙儿五更》是由什么乐器演奏的呢?学生回答。教师:板胡是我国弓弦乐器。音箱不是蒙以皮革,而是盖上薄的木板或椰壳,形似碗状,琴干琴弓比二胡粗;音色高亢嘹亮。下面我们来听两段音乐,请大家分辨一下是二胡的音色还是板胡的音色。学生回答。4、教师:下面,老师给大家介绍一位男高音歌唱家郭颂,郭颂演唱了很多优秀的民歌,我们来欣赏一首由他演唱的《月牙儿五更》。学生欣赏乐曲教师:由此我们可以看出很多器乐作品都源于优秀的民歌,民歌是我们源于创作的源泉。让学生了解民歌是音乐创作的源泉。三、课堂小结教师:同学们,今天这节课我们欣赏了关东支脉地区的音乐,我们了解了它的风格特点,也了解了很多的音乐创作都来源于民歌。希望在课下,同学们能够多去了解欣赏民歌,让民歌的灿烂文化一直发扬光大。
本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》第五章的5.5.1 两角和与差的正弦、余弦和正切公式。本节的主要内容是由两角差的余弦公式的推导,运用诱导公式、同角三角函数的基本关系和代数变形,得到其它的和差角公式。让学生感受数形结合及转化的思想方法。发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。课程目标 学科素养1.了解两角差的余弦公式的推导过程.2.掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式.3.熟悉两角和与差的正弦、余弦、正切公式的灵活运用,了解公式的正用、逆用以及角的变换的常用方法.4.通过正切函数图像与性质的探究,培养学生数形结合和类比的思想方法。 a.数学抽象:公式的推导;b.逻辑推理:公式之间的联系;c.数学运算:运用和差角角公式求值;d.直观想象:两角差的余弦公式的推导;e.数学建模:公式的灵活运用;
本节内容是三角恒等变形的基础,是正弦线、余弦线和诱导公式等知识的延伸,同时,它又是两角和、差、倍、半角等公式的“源头”。两角和与差的正弦、余弦、正切是本章的重要内容,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有着重要的支撑作用。 课程目标1、能够推导出两角和与差的正弦、余弦、正切公式并能应用; 2、掌握二倍角公式及变形公式,能灵活运用二倍角公式解决有关的化简、求值、证明问题.数学学科素养1.数学抽象:两角和与差的正弦、余弦和正切公式; 2.逻辑推理: 运用公式解决基本三角函数式的化简、证明等问题;3.数学运算:运用公式解决基本三角函数式求值问题.4.数学建模:学生体会到一般与特殊,换元等数学思想在三角恒等变换中的作用。.
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,