(这部分音乐重复了第几部分的音乐?这部分音乐再次出现,让你有何感受?(学生即兴说,畅所欲言、发表见解与感受)结尾是什么样的效果?(情绪更加热烈,在欢乐的手鼓声中结束全曲)。六、完整欣赏整首乐曲。教师不做任何要求,学生用自己喜欢的方式、带着自己的见解去欣赏乐曲。(总结,如乐曲分成三个部分,以豪放的笔资、艳丽的色彩、粗犷的风格描绘了一幅新疆人民载歌载舞的欢庆场面。)七、拓展1、欣赏原苏联指挥家迪利济耶夫改编的管弦乐《新疆舞曲第二号》。2、谈一谈和钢琴曲对比,有何不同的感受?(在对不同表现形式的对比中,提高音乐的欣赏能力对比欣赏后,鼓励学生谈感受,更利于今后主动欣赏音乐。)八、布置作业搜集作曲家丁德善其他作品。板书设计:欣赏《新疆舞曲第二号》
1.想想课文讲了一件什么事?“鱼游到了纸上”的意思是什么?(“我”去玉泉观鱼,认识了一位残疾青年,他每个星期天都来这里画金鱼。“鱼游到了纸上”意思是说这位青年画的金鱼十分形象生动,像活的那样在纸上游动。学生可以从整体感知课文内容,只要大致说出课文讲了一件什么事就行了。)2.你是怎么知道这位青年是聋哑人?找出课文中的有关语句。(“从来不说一句话”“没有任何反应”,和他胸前佩戴的“福利工厂”的厂徽,可以看出他是一位聋哑青年。如果是会说话的人,不可能从来不说一句话;如果是听得见的人,那么在众人的赞叹、议论声中,不可能“没有任何反应”;“福利工厂”一般是专为残疾人开办的工厂。)
一、说教材今天我说课的课题是《一个数乘小数》。它是人教版小学五年级上册第一单元第二课时的教学内容。本课时内容是在学生学习了小数点位置移动引起小数大小变化的规律,以及前一节课《小数乘整数》的基础上进行教学的,它既是小数除法学习的基础,也是小数四则混合运算学习的基础。本节课的教学目标为:1、让学生进一步巩固掌握一个数乘小数的意义和计算方法,通过学生的积极思考、全班交流和教师引导,得出确定积的小数位数时,位数不够要用“0”补足的方法。并能正确进行笔算和口算。2、让学生体验学习过程是一个不断遇到问题、不断探究解决问题方法的过程,感受探索成功的愉悦,感受数学与生活的联系。3、在探索过程中,培养学生的推理能力、归纳能力和语言表达能力。
1.说课内容本课时的内容是九年义务教育人教版小学数学二年级上册第四单元表内乘法(一)的内容。2.教材地位及作用“5的乘法口诀”这部分内容是在学生已经掌握乘法意义的基础上进行教学的,是学习编写口诀的开端,其地位尤为重要;由于学生有五个五个数数的基础和经验,很容易得出2个5,3个5,4个5,5个5的和。再联系乘法的意义,从加法算式到乘法算式,最后编写乘法口诀;使学生在理解的基础上掌握5的乘法口诀。二、说教学目标:知识目标:知道5的乘法口诀的来源,理解每句口诀的含义,并能熟记5的乘法口诀。能力目标:学生能够灵活运用5的乘法口诀解决简单的实际问题,初步培养学生观察、分析、归纳的能力。情感目标:让学生体会数学与生活的密切联系,激发学生热爱数学的情感。
教学目标:1、知识与技能:通过复习,使学生进一步理解乘法运算的意义。通过知识的系统复习,沟通乘法口诀与乘法算式、加法算式及倍数之间的联系,能正确、合理、灵活的解决问题。2、过程和方法:在经历整理和复习的过程中,培养学生的数学能力。注重培养学生从不同角度观察、思考问题的习惯,体会解决问题策略多样化的教学思想。3、情感、态度与价值观:通过创设连贯性的故事情境,使学生积极主动的投入到学习中来,从而体验到学习数学的乐趣。培养学生学习数学的热情以及积极思考与同学合作学习的习惯。教学重点:进一步理解乘法运算的意义,乘法口诀与乘法算式、加法算式及倍数之间的联系教学难点:建构乘法口诀与乘法算式、加法算式及倍数之间的联系
一、说教材:6的乘法口诀是人教版九年制义务教育小学数学第三册第三单元第六课时的内容。是在学生已经初步理解了乘法的意义,学会了1——5的乘法口诀的基础上进行教学的。教材在编排上先出现一组准备题,每次加6,把得数填在空格里;再出现例10,看图写出乘法算式,并编写出乘法口诀;然后进行巩固练习、并运用所学知识解决实际问题。乘法口诀的教学是本单元教学的一个重点,也是本学期教学的一个重点,它是学生以后进一步学习乘除法的基础。根据教学内容、学生实际和新课程标准的要求,我从知识与技能,过程与方法,情感态度与价值观等几方面制定了本课的教学目标:教学目标:1、知识目标:学生通过操作软件,在学习乘法口诀的过程中进一步理解意义,让学生在实际问题情景中感受乘法口诀的形成过程,并能用口诀熟练地进行计算。
学习目标1.掌握两个一次函数图像的应用;(重点)2.能利用函数图象解决实际问题。(难点)教学过程一、情景导入在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图所示.请你根据图象所提供的信息回答下列问题:甲、乙两根蜡烛燃烧前的高度分别是 厘米、 厘米,从点燃到燃尽所用的时间分别是 小时、 小时.你会解答上面的问题吗?学完本解知识,相信你能很快得出答案。二、 合作探究探究点一:两个一次函数的应用(2015?日照模拟)自来水公司有甲、乙两个蓄水池,现将甲池的中水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如下所示,结合图象回答下列问题.(1)分别求出甲、乙两个蓄水池中水的深度y与注水时间x之间的函数表达式;(2)求注入多长时间甲、乙两个蓄水池水的深度相同;(3)求注入多长时间甲、乙两个蓄水的池蓄水量相同;
解:方法一:因为DE∥BC,所以∠ADE=∠B,∠AED=∠C,所以△ADE∽△ABC,所以ADAB=DEBC,即44+8=5BC,所以BC=15cm.又因为DF∥AC,所以四边形DFCE是平行四边形,所以FC=DE=5cm,所以BF=BC-FC=15-5=10(cm).方法二:因为DE∥BC,所以∠ADE=∠B.又因为DF∥AC,所以∠A=∠BDF,所以△ADE∽△DBF,所以ADDB=DEBF,即48=5BF,所以BF=10cm.方法总结:求线段的长,常通过找三角形相似得到成比例线段而求得,因此选择哪两个三角形就成了解题的关键,这就需要通过已知的线段和所求的线段分析得到.三、板书设计(1)相似三角形的定义:三角分别相等、三边成比例的两个三角形叫做相似三角形;(2)相似三角形的判定定理1:两角分别相等的两个三角形相似.感受相似三角形与相似多边形、相似三角形与全等三角形的区别与联系,体验事物间特殊与一般的关系.让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力,培养学生的观察、动手探究、归纳总结的能力.
(一)导入新课三角形全等的判定中AA S 和ASA对应于相似三 角形的判定的判定定理1,SAS对应于相似三 角形的判定的判定定理2,那么SSS 对应的三角形相似的判定命题是否正确,这就是本节研究的内容.(板书)(二) 做一做画△ABC与△A′B′C′,使 、 和 都等 于给定的值k.(1)设法比较∠A与∠A′的大小;(2)△ABC与△A′B′C′相似吗?说说你的理由.改变k值的大小,再试一试.定理3:三边:成比例的两个三 角形相似.(三)例题学习例:如图,在△ABC和△ADE中,ABAD=BCDE=ACAE ,∠BAD=20°,求∠CAE的度数.解:∵ABAD=BCDE=ACAE ,∴△ABC∽△ADE(三边成比例的两个三角形相似). ∴∠BAC=∠DAE,∴∠BAC-∠DAC =∠D AE-∠DAC,即∠BAD=∠CAE.∵∠BAD=20°,∴∠CAE=20°. 三、巩固练习四、小结本节学 习了相似三角形的判定定理3,使用时一定要注意它使用的条件.
【教学目标】1.经历从不同方向观察物体的活动过程,发展空间观念;能在与他人交流的过程中,合理清晰地表达自己的思维过程.2.在观察的过程中,初步体会从不同方向观察同一物体可能看到不同的图形.3.能识别简单物体的三视图,会画立方体及其简单组合体的三视图.【基础知识精讲】1.主视图、左视图、俯视图的定义从不同方向观察同一物体,从正面看到的图叫主视图,从左面看到的图叫左视图,从上面看到的图叫做俯视图.2.几种几何体的三视图(1)正方体:三视图都是正方形.圆锥的主视图、左视图都是三角形,而俯视图的图中有一个点表示圆锥的顶点,因为从上往下看圆锥时先看到圆锥的顶点,再看到底面的圆.3.如何画三视图 当用若干个小正方体搭成新的几何体,如何画这个新的几何体的三视图?
目的:课后作业设计包括了两个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;拓广知识,增加学生对数学问题本质的思考而设计,通过此题可让学生进一步运用三元一次方程组解决问题.教学设计反思1.本节课的内容属于选修学习的内容,主要突出对数学兴趣浓厚、学有余力的同学进一步探究和拓展使用,在数学方法和思想方面需重点引导,通过引导,使学生明白解多元方程组的一般方法和思想,理解巩固环节需多注意多种解题方法的引导,并且比较各种解题方法之间的优劣,总结出解多元方程的基本方法.2.作为选修课,在内容上要让学生理解三元一次方程组概念的同时,要让学生理解为什么要用三元一次方程组甚至多元方程组去求解实际问题的必要性,从而掌握本堂课的基础知识.在教学的过程中,要让学生充分理解对复杂的实际问题方程中元越多,等量关系的建立就越直接;充分理解代入消元法和加减法解方程的优点和缺点,有关这一方面的题目要让学生充分讨论、交流、合作,其理解才会深刻.
证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则∠BDC是△CDE的一个外角.∴∠BDC>∠DEC.(三角形的一个外角大于任何一个和它不相邻的内角)∵∠DEC是△ABE的一个外角(已作)∴∠DEC>∠A(三角形的一个外角大于任何一个和它不相邻的内角)∴∠BDC>∠A(不等式的性质)(2)延长BD交AC于E,则∠BDC是△DCE的一个外角.∴∠BDC=∠C+∠DEC(三角形的一个外角等于和它不相邻的两个内角的和)∵∠DEC是△ABE的一个外角∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∴∠BDC=∠B+∠C+∠BAC(等量代换)活动目的:让学生接触各种类型的几何证明题,提高逻辑推理能力,培养学生的证明思路,特别是不等关系的证明题,因为学生接触较少,因此更需要加强练习.注意事项:学生对于几何图形中的不等关系的证明比较陌生,因此有必要在证明第2小题中,要引导学生找到一个过渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等关系的传递性得出∠1>∠2。
[想一想]同学们经历了上述三种方法,你还能想出哪些测量旗杆高度的方法?你认为最优化的方法是哪种?思路点拔:1、如果旗杆周围有足够地空地使旗杆在太阳光照射下影子都在平地上,并能测出影子的长度,那么,可以在平地垂直树一根小棒,等到小棒的影子恰好等于棒高时,再量旗杆的影子,此时旗杆的影子长度就是这个旗杆的高度.2、可以采用立一个已知长度的参照物在旗杆旁照相后量出照片中旗杆与参照物的长度根据线段成比例来进行计算.3、拿一根知道长度的直棒,手臂伸直,不断调整自己的位置,使直棒刚好完全挡住旗杆,量出此时人到旗杆的距离、人手臂的长度和棒长,就可以利用三角形相似来进行计算.等等.第四环节 课堂小结1、本节课你学到了哪些知识?2、在运用科学知识进行实践过程中,你是否想到最优的方法?3、在与同伴合作交流中,你对自己的表现满意吗?第五环节 布置作业,反思提炼
教学目标:1.会画直棱柱(仅限于直三棱柱和直四棱柱)的三种视图,体会这几种几何体与其视图之间的相互转化。2. 会根据三视图描述原几何体。教学重点:掌握直棱柱的三视图的画法。能根据三视图描述原几何体。教学难点:几何体与视图之间的相互转化。培养空间想像观念。课型:新授课教学方法:观察实践法一、实物观察、空间想像观察:请同学们拿出事先准备好的直三棱柱、直四棱柱,根据你所摆放的位置经过 想像,再抽象出这两个直棱柱的主视图,左视图和俯视图。绘制:请你将抽象出来的三种视图画出来,并与同伴交流。比较:小亮画出了其中一个几何体的主视图、左视图和俯视图,你认为他画的对不对?谈谈你的看法。拓展:当你手中的两个直棱柱摆放的角度变化时,它们的三种视图是否会随之改变?试一试。
●教学目标(一)教学知识点1.相似三角形的周长比,面积比与相似比的关系.2. 相似三角形的周长比,面积比在实际中的应用.(二)能 力训练要求1.经历探索相似三角形的 性质的过程,培养学生的探索能力.2.利用相似三角形的性质解决实际问题训练学生的运用能力.(三)情 感与价值观要求1.学 生通过交流、归纳,总结相似三角形的周长比、面积比与相似比的关系,体会知识迁移、温故知新的好处.2.运用相似多边形的周长比,面积比解决实际问题,增强学生对知识的应用意识.●教学重点1.相似三角形的周长比、面积比与相似比关系的推导.2.运用相似三角形的比例关系解决实际问题.●教学难点相似三角形周长比、面积比与相似比的关系的推导及运用.●教学方法引导启发式通过温故知新,知识迁移,引导学生发现新的结论,通过比较、分析,应用获得的知识达到理解并掌握的 目的.●教具准备投影片两张第一张:(记作§4.7.2 A)第二张:(记作§4.7.2 B)
教学目标:1.经历由实物抽象出几何体的过程,进一步发展空间观念。2.会画圆柱、圆锥、球的三视图,体会这几种几何体与其视图之间的相互转化。3.会根据三视图描述原几何体。教学重点:掌握部分几何体的三视图的画法,能根据三视图描述原几何体。教学难点:几何体与视图之间的相互转化。培养空间想像观念。课型:新授课教学方法:观察实践法教学过程设计一、实物观察、空间想像设置:学生利用准备好的大小相同的正方形方块,搭建一个立体图形,让同学们画出三视图。而后,再要求学生利用手中12块正方形的方块实物,搭建2个立体图形,并画出它们的三视图。学生分小组合作交流、观察、作图。议一议1.图5-14中物体的形状分别可以看成什么样的几何体?从正面、侧面、上面看这些几何体,它们的形状各是什么样的?2.在图5-15中找出图5-14中各物体的主视图。3.图5-14中各物体的左视图是什么?俯视图呢?
8.一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0)则光线从A点到B点经过的路线长是( )A.4 B.5 C.6 D.7第四环节课堂小结1、关于y轴对称的两个图形上点的坐标特征:(x , y)——(- x , y)2、关于x轴对称的两个图形上点的坐标特征:(x , y)——(x , - y)3、关于原点对称的两个图形上点的坐标特征:(x , y)——(- x , -y)第五环节布置作业习题3.5 1,2,3四、 教学反思通过“坐标与轴对称”,经历图形坐标变化与图形的轴对称之间的关系的探索过程, 掌握空间与图形的基础知识和基本技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发学生对数学学习的好奇心与求知欲,学生能积极参与数学学习活动;积极交流合作,体验数学活动充满着探索与创造。教学中务必给学生创造自主学习与合作交流的机会,留给学生充足的动手机会和思考空间,教师不要急于下结论。事先一定要准备好坐标纸等,提高课堂效率。
3.想一想在例1中,(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?(2)线段CE位置有什么特点?(3)坐标轴上点的坐标有什么特点?由B(0,-3),C(3,-3)可以看出它们的纵坐标相同,即B,C两点到X轴的距离相等,所以线段BC平行于横轴(x轴),垂直于纵轴(y轴)。第三环节学有所用.补充:1.在下图中,确定A,B,C,D,E,F,G的坐标。(第1题) (第2题)2.如右图,求出A,B,C,D,E,F的坐标。第四环节感悟与收获1.认识并能画出平面直角坐标系。2.在给定的直角坐标系中,由点的位置写出它的坐标。3.能适当建立直角坐标系,写出直角坐标系中有关点的坐标。4.横(纵)坐标相同的点的直线平行于y轴,垂直于x轴;连接纵坐标相同的点的直线平行于x轴,垂直于y轴。5.坐标轴上点的纵坐标为0;纵坐标轴上点的坐标为0。6.各个象限内的点的坐标特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。
大家好,我今天的说课内容是《6和7 的认识》,下面,我将从教学背景、教学目标、教法学法、教学用具、教学过程、教学特色等六个方面来谈。一、教学背景(一)教材分析本节课是新人教版一年级上册第五单元“6~10的认识和加减法”的“6和7”部分的第一课时“6和7的认识”,即教材第39到40页的内容。从教材内容来看,这两页可以分为五个部分:情境导入、6和7的表示、5、6、7的大小关系、7与第7的区别(也可以说是基数与序数的区别)、6和7的书写。与本节课相关的内容还有第43页练习九中的1~3小题。在学习本节课内容之前,我们已经学习了0~5的认识,“>”“<”“=”等符号的表示,第1到第5的认识。在学习本节课内容之后,我们还要学习8和9的认识、10的认识、11~20各数的认识。
二、学情分析六年级学生喜欢各种各样的探索活动,他们希望能够在活动中自己去研究事物、发现问题,更渴望能在研究活动中解决自己的疑问,从中获得成功的喜悦。结合学生的实际特点和教学的主要内容,本节课我着重通过开展丰富的探索实验活动,发展学生的学习能力。三、教学目标根据以上结构特点的分析和学生的认知规律,确定了本节课的教学目标如下:(1)知识目标:使学生理解圆周率的含义,在体验圆周率的形成过程中,让学生发现、总结和运用求圆周长的计算方法。(2)能力目标:通过引导学生探究圆周率的形成过程,培养学生动手操作的能力和解决简单的实际问题的能力。(3)情感目标:培养学生勇于探索、积极思考、团结协作的良好行为习惯,让学生在学习中体验数学的价值。另外,通过对有关资料的了解,增强学生的民族自豪感。四、教学重难点和关键我确定本节课的重点是:推导圆周长的计算方法。教学难点是:学生以合作实践,讨论交流的方式探究圆周率的含义。